Loading…
Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO’s Second Observing Run
We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO’s second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify...
Saved in:
Published in: | Physical review letters 2019-10, Vol.123 (16), p.161102-161102, Article 161102 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-fd6ced74817e1bbcc9338f829f48b5bcfca7b0e98f04716b605eb734adb205a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-fd6ced74817e1bbcc9338f829f48b5bcfca7b0e98f04716b605eb734adb205a13 |
container_end_page | 161102 |
container_issue | 16 |
container_start_page | 161102 |
container_title | Physical review letters |
container_volume | 123 |
creator | Abbott, B. P. Abbott, R. Abbott, T. D. Abraham, S. Acernese, F. Ackley, K. Adams, C. Adhikari, R. X. Adya, V. B. Affeldt, C. Agathos, M. Agatsuma, K. Aggarwal, N. Aguiar, O. D. Aiello, L. Ain, A. Ajith, P. Allen, G. Allocca, A. Aloy, M. A. Altin, P. A. Amato, A. Anand, S. Ananyeva, A. Anderson, S. B. Anderson, W. G. Angelova, S. V. Antier, S. Appert, S. Arai, K. Araya, M. C. Areeda, J. S. Arène, M. Arnaud, N. Campbell, W. A. Dalya, G. Singh, D. |
description | We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO’s second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between 0.2 M⊙–1.0 M⊙. We use the null result to constrain the binary merger rate of (0.2 M⊙, 0.2 M⊙) binaries to be less than 3.7×105 Gpc−3 yr−1 and the binary merger rate of (1.0 M⊙, 1.0 M⊙) binaries to be less than 5.2×103 Gpc−3 yr−1. Subsolar mass ultracompact objects are not expected to form via known stellar evolution channels, though it has been suggested that primordial density fluctuations or particle dark matter with cooling mechanisms and/or nuclear interactions could form black holes with subsolar masses. Assuming a particular primordial black hole (PBH) formation model, we constrain a population of merging 0.2 M⊙ black holes to account for less than 16% of the dark matter density and a population of merging 1.0 M⊙ black holes to account for less than 2% of the dark matter density. We discuss how constraints on the merger rate and dark matter fraction may be extended to arbitrary black hole population models that predict subsolar mass binaries. |
doi_str_mv | 10.1103/PhysRevLett.123.161102 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1603533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313362935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-fd6ced74817e1bbcc9338f829f48b5bcfca7b0e98f04716b605eb734adb205a13</originalsourceid><addsrcrecordid>eNpNkd-K1DAUxoMoOI6-gUjwSi865k-btpfjorsLlZEdF7wLSXo6E-kkY5IW9s7X8PV8EjNWxKtzOHzfx8f5IfSKkg2lhL_7fHyIdzB3kNKGMr6hIp_ZI7SipG6LmtLyMVoRwmnRElI_Rc9i_EYIoUw0K_R1DyqYIx58wPtJRz-qgD-pGPH9mIIy_nRWJuH31qlgIWLr8LaflTPQ4-72evfrx8-I92C86_FORwizdQd8N7nn6Mmgxggv_s41uv_44cvVTdHtrm-vtl1hSsFSMfQiR9VlQ2ugWhvTct4MDWuHstGVNoNRtSbQNgMpayq0IBXompeq14xUivI1er3k-pisjMYmMMdcx4FJkgrCK86ziC-i0cIBpA_ayplJr-yyT-NBKiM1SJa_IjnhNWfZ9XZxHdUoz8GeVHj447nZdvJyI4yWZZbOlxpvFu05-O8TxCRPNhoYR-XAT1EyTjkXrM111kgsUhN8jAGGf9mUyAtR-R9RmYnKhWg2vlyMTkUlXQo5NlfIKEtRVfw3QM6ezA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313362935</pqid></control><display><type>article</type><title>Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO’s Second Observing Run</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Abbott, B. P. ; Abbott, R. ; Abbott, T. D. ; Abraham, S. ; Acernese, F. ; Ackley, K. ; Adams, C. ; Adhikari, R. X. ; Adya, V. B. ; Affeldt, C. ; Agathos, M. ; Agatsuma, K. ; Aggarwal, N. ; Aguiar, O. D. ; Aiello, L. ; Ain, A. ; Ajith, P. ; Allen, G. ; Allocca, A. ; Aloy, M. A. ; Altin, P. A. ; Amato, A. ; Anand, S. ; Ananyeva, A. ; Anderson, S. B. ; Anderson, W. G. ; Angelova, S. V. ; Antier, S. ; Appert, S. ; Arai, K. ; Araya, M. C. ; Areeda, J. S. ; Arène, M. ; Arnaud, N. ; Campbell, W. A. ; Dalya, G. ; Singh, D.</creator><creatorcontrib>Abbott, B. P. ; Abbott, R. ; Abbott, T. D. ; Abraham, S. ; Acernese, F. ; Ackley, K. ; Adams, C. ; Adhikari, R. X. ; Adya, V. B. ; Affeldt, C. ; Agathos, M. ; Agatsuma, K. ; Aggarwal, N. ; Aguiar, O. D. ; Aiello, L. ; Ain, A. ; Ajith, P. ; Allen, G. ; Allocca, A. ; Aloy, M. A. ; Altin, P. A. ; Amato, A. ; Anand, S. ; Ananyeva, A. ; Anderson, S. B. ; Anderson, W. G. ; Angelova, S. V. ; Antier, S. ; Appert, S. ; Arai, K. ; Araya, M. C. ; Areeda, J. S. ; Arène, M. ; Arnaud, N. ; Campbell, W. A. ; Dalya, G. ; Singh, D. ; LIGO Scientific Collaboration and the Virgo Collaboration ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO’s second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between 0.2 M⊙–1.0 M⊙. We use the null result to constrain the binary merger rate of (0.2 M⊙, 0.2 M⊙) binaries to be less than 3.7×105 Gpc−3 yr−1 and the binary merger rate of (1.0 M⊙, 1.0 M⊙) binaries to be less than 5.2×103 Gpc−3 yr−1. Subsolar mass ultracompact objects are not expected to form via known stellar evolution channels, though it has been suggested that primordial density fluctuations or particle dark matter with cooling mechanisms and/or nuclear interactions could form black holes with subsolar masses. Assuming a particular primordial black hole (PBH) formation model, we constrain a population of merging 0.2 M⊙ black holes to account for less than 16% of the dark matter density and a population of merging 1.0 M⊙ black holes to account for less than 2% of the dark matter density. We discuss how constraints on the merger rate and dark matter fraction may be extended to arbitrary black hole population models that predict subsolar mass binaries.</description><identifier>ISSN: 0031-9007</identifier><identifier>ISSN: 1079-7114</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.161102</identifier><language>eng</language><publisher>Goddard Space Flight Center: American Physical Society</publisher><subject>astronomical black holes ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Aérospatiale, astronomie & astrophysique ; dark matter ; General Relativity and Quantum Cosmology ; gravitational wave detection ; gravitational wave sources ; gravitational waves ; massive compact halo objects ; Physical, chemical, mathematical & earth Sciences ; Physics ; Physique, chimie, mathématiques & sciences de la terre ; Solar Physics ; Space science, astronomy & astrophysics</subject><ispartof>Physical review letters, 2019-10, Vol.123 (16), p.161102-161102, Article 161102</ispartof><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-fd6ced74817e1bbcc9338f829f48b5bcfca7b0e98f04716b605eb734adb205a13</citedby><cites>FETCH-LOGICAL-c462t-fd6ced74817e1bbcc9338f829f48b5bcfca7b0e98f04716b605eb734adb205a13</cites><orcidid>0000-0002-3952-5985 ; 0000-0002-7930-9347 ; 0000-0002-4341-2860 ; 0000-0001-9432-7108 ; 0000-0001-7292-9271 ; 0000-0002-8454-7497 ; 0000-0003-2572-3101 ; 0000-0001-6487-5197 ; 0000-0001-7469-4250 ; 0000-0003-1350-2037 ; 0000-0003-0589-9687 ; 0000-0002-1852-2507 ; 0000-0001-6589-8673 ; 0000-0003-1714-365X ; 0000-0002-1421-4996 ; 0000-0002-0685-8310 ; 0000-0001-5078-9044 ; 0000-0002-1019-6911 ; 0000-0003-3133-3660 ; 0000-0002-6253-3190 ; 0000-0003-3768-9908 ; 0000-0002-1180-4050 ; 0000-0002-4298-5130 ; 0000-0001-6796-7572 ; 0000-0002-3658-7240 ; 0000-0002-9964-8469 ; 0000-0001-6354-8514 ; 0000-0002-9293-8439 ; 0000-0002-7686-3334 ; 0000-0002-2002-1701 ; 0000-0002-4991-8213 ; 0000-0002-5394-6890 ; 0000-0002-4618-1674 ; 0000-0001-9157-4349 ; 0000-0001-5860-1157 ; 0000-0002-4918-0247 ; 0000-0003-2112-0653 ; 000000019769531X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://hal.science/hal-02144373$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1603533$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Abbott, B. P.</creatorcontrib><creatorcontrib>Abbott, R.</creatorcontrib><creatorcontrib>Abbott, T. D.</creatorcontrib><creatorcontrib>Abraham, S.</creatorcontrib><creatorcontrib>Acernese, F.</creatorcontrib><creatorcontrib>Ackley, K.</creatorcontrib><creatorcontrib>Adams, C.</creatorcontrib><creatorcontrib>Adhikari, R. X.</creatorcontrib><creatorcontrib>Adya, V. B.</creatorcontrib><creatorcontrib>Affeldt, C.</creatorcontrib><creatorcontrib>Agathos, M.</creatorcontrib><creatorcontrib>Agatsuma, K.</creatorcontrib><creatorcontrib>Aggarwal, N.</creatorcontrib><creatorcontrib>Aguiar, O. D.</creatorcontrib><creatorcontrib>Aiello, L.</creatorcontrib><creatorcontrib>Ain, A.</creatorcontrib><creatorcontrib>Ajith, P.</creatorcontrib><creatorcontrib>Allen, G.</creatorcontrib><creatorcontrib>Allocca, A.</creatorcontrib><creatorcontrib>Aloy, M. A.</creatorcontrib><creatorcontrib>Altin, P. A.</creatorcontrib><creatorcontrib>Amato, A.</creatorcontrib><creatorcontrib>Anand, S.</creatorcontrib><creatorcontrib>Ananyeva, A.</creatorcontrib><creatorcontrib>Anderson, S. B.</creatorcontrib><creatorcontrib>Anderson, W. G.</creatorcontrib><creatorcontrib>Angelova, S. V.</creatorcontrib><creatorcontrib>Antier, S.</creatorcontrib><creatorcontrib>Appert, S.</creatorcontrib><creatorcontrib>Arai, K.</creatorcontrib><creatorcontrib>Araya, M. C.</creatorcontrib><creatorcontrib>Areeda, J. S.</creatorcontrib><creatorcontrib>Arène, M.</creatorcontrib><creatorcontrib>Arnaud, N.</creatorcontrib><creatorcontrib>Campbell, W. A.</creatorcontrib><creatorcontrib>Dalya, G.</creatorcontrib><creatorcontrib>Singh, D.</creatorcontrib><creatorcontrib>LIGO Scientific Collaboration and the Virgo Collaboration</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO’s Second Observing Run</title><title>Physical review letters</title><description>We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO’s second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between 0.2 M⊙–1.0 M⊙. We use the null result to constrain the binary merger rate of (0.2 M⊙, 0.2 M⊙) binaries to be less than 3.7×105 Gpc−3 yr−1 and the binary merger rate of (1.0 M⊙, 1.0 M⊙) binaries to be less than 5.2×103 Gpc−3 yr−1. Subsolar mass ultracompact objects are not expected to form via known stellar evolution channels, though it has been suggested that primordial density fluctuations or particle dark matter with cooling mechanisms and/or nuclear interactions could form black holes with subsolar masses. Assuming a particular primordial black hole (PBH) formation model, we constrain a population of merging 0.2 M⊙ black holes to account for less than 16% of the dark matter density and a population of merging 1.0 M⊙ black holes to account for less than 2% of the dark matter density. We discuss how constraints on the merger rate and dark matter fraction may be extended to arbitrary black hole population models that predict subsolar mass binaries.</description><subject>astronomical black holes</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Aérospatiale, astronomie & astrophysique</subject><subject>dark matter</subject><subject>General Relativity and Quantum Cosmology</subject><subject>gravitational wave detection</subject><subject>gravitational wave sources</subject><subject>gravitational waves</subject><subject>massive compact halo objects</subject><subject>Physical, chemical, mathematical & earth Sciences</subject><subject>Physics</subject><subject>Physique, chimie, mathématiques & sciences de la terre</subject><subject>Solar Physics</subject><subject>Space science, astronomy & astrophysics</subject><issn>0031-9007</issn><issn>1079-7114</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkd-K1DAUxoMoOI6-gUjwSi865k-btpfjorsLlZEdF7wLSXo6E-kkY5IW9s7X8PV8EjNWxKtzOHzfx8f5IfSKkg2lhL_7fHyIdzB3kNKGMr6hIp_ZI7SipG6LmtLyMVoRwmnRElI_Rc9i_EYIoUw0K_R1DyqYIx58wPtJRz-qgD-pGPH9mIIy_nRWJuH31qlgIWLr8LaflTPQ4-72evfrx8-I92C86_FORwizdQd8N7nn6Mmgxggv_s41uv_44cvVTdHtrm-vtl1hSsFSMfQiR9VlQ2ugWhvTct4MDWuHstGVNoNRtSbQNgMpayq0IBXompeq14xUivI1er3k-pisjMYmMMdcx4FJkgrCK86ziC-i0cIBpA_ayplJr-yyT-NBKiM1SJa_IjnhNWfZ9XZxHdUoz8GeVHj447nZdvJyI4yWZZbOlxpvFu05-O8TxCRPNhoYR-XAT1EyTjkXrM111kgsUhN8jAGGf9mUyAtR-R9RmYnKhWg2vlyMTkUlXQo5NlfIKEtRVfw3QM6ezA</recordid><startdate>20191018</startdate><enddate>20191018</enddate><creator>Abbott, B. P.</creator><creator>Abbott, R.</creator><creator>Abbott, T. D.</creator><creator>Abraham, S.</creator><creator>Acernese, F.</creator><creator>Ackley, K.</creator><creator>Adams, C.</creator><creator>Adhikari, R. X.</creator><creator>Adya, V. B.</creator><creator>Affeldt, C.</creator><creator>Agathos, M.</creator><creator>Agatsuma, K.</creator><creator>Aggarwal, N.</creator><creator>Aguiar, O. D.</creator><creator>Aiello, L.</creator><creator>Ain, A.</creator><creator>Ajith, P.</creator><creator>Allen, G.</creator><creator>Allocca, A.</creator><creator>Aloy, M. A.</creator><creator>Altin, P. A.</creator><creator>Amato, A.</creator><creator>Anand, S.</creator><creator>Ananyeva, A.</creator><creator>Anderson, S. B.</creator><creator>Anderson, W. G.</creator><creator>Angelova, S. V.</creator><creator>Antier, S.</creator><creator>Appert, S.</creator><creator>Arai, K.</creator><creator>Araya, M. C.</creator><creator>Areeda, J. S.</creator><creator>Arène, M.</creator><creator>Arnaud, N.</creator><creator>Campbell, W. A.</creator><creator>Dalya, G.</creator><creator>Singh, D.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>Q33</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3952-5985</orcidid><orcidid>https://orcid.org/0000-0002-7930-9347</orcidid><orcidid>https://orcid.org/0000-0002-4341-2860</orcidid><orcidid>https://orcid.org/0000-0001-9432-7108</orcidid><orcidid>https://orcid.org/0000-0001-7292-9271</orcidid><orcidid>https://orcid.org/0000-0002-8454-7497</orcidid><orcidid>https://orcid.org/0000-0003-2572-3101</orcidid><orcidid>https://orcid.org/0000-0001-6487-5197</orcidid><orcidid>https://orcid.org/0000-0001-7469-4250</orcidid><orcidid>https://orcid.org/0000-0003-1350-2037</orcidid><orcidid>https://orcid.org/0000-0003-0589-9687</orcidid><orcidid>https://orcid.org/0000-0002-1852-2507</orcidid><orcidid>https://orcid.org/0000-0001-6589-8673</orcidid><orcidid>https://orcid.org/0000-0003-1714-365X</orcidid><orcidid>https://orcid.org/0000-0002-1421-4996</orcidid><orcidid>https://orcid.org/0000-0002-0685-8310</orcidid><orcidid>https://orcid.org/0000-0001-5078-9044</orcidid><orcidid>https://orcid.org/0000-0002-1019-6911</orcidid><orcidid>https://orcid.org/0000-0003-3133-3660</orcidid><orcidid>https://orcid.org/0000-0002-6253-3190</orcidid><orcidid>https://orcid.org/0000-0003-3768-9908</orcidid><orcidid>https://orcid.org/0000-0002-1180-4050</orcidid><orcidid>https://orcid.org/0000-0002-4298-5130</orcidid><orcidid>https://orcid.org/0000-0001-6796-7572</orcidid><orcidid>https://orcid.org/0000-0002-3658-7240</orcidid><orcidid>https://orcid.org/0000-0002-9964-8469</orcidid><orcidid>https://orcid.org/0000-0001-6354-8514</orcidid><orcidid>https://orcid.org/0000-0002-9293-8439</orcidid><orcidid>https://orcid.org/0000-0002-7686-3334</orcidid><orcidid>https://orcid.org/0000-0002-2002-1701</orcidid><orcidid>https://orcid.org/0000-0002-4991-8213</orcidid><orcidid>https://orcid.org/0000-0002-5394-6890</orcidid><orcidid>https://orcid.org/0000-0002-4618-1674</orcidid><orcidid>https://orcid.org/0000-0001-9157-4349</orcidid><orcidid>https://orcid.org/0000-0001-5860-1157</orcidid><orcidid>https://orcid.org/0000-0002-4918-0247</orcidid><orcidid>https://orcid.org/0000-0003-2112-0653</orcidid><orcidid>https://orcid.org/000000019769531X</orcidid></search><sort><creationdate>20191018</creationdate><title>Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO’s Second Observing Run</title><author>Abbott, B. P. ; Abbott, R. ; Abbott, T. D. ; Abraham, S. ; Acernese, F. ; Ackley, K. ; Adams, C. ; Adhikari, R. X. ; Adya, V. B. ; Affeldt, C. ; Agathos, M. ; Agatsuma, K. ; Aggarwal, N. ; Aguiar, O. D. ; Aiello, L. ; Ain, A. ; Ajith, P. ; Allen, G. ; Allocca, A. ; Aloy, M. A. ; Altin, P. A. ; Amato, A. ; Anand, S. ; Ananyeva, A. ; Anderson, S. B. ; Anderson, W. G. ; Angelova, S. V. ; Antier, S. ; Appert, S. ; Arai, K. ; Araya, M. C. ; Areeda, J. S. ; Arène, M. ; Arnaud, N. ; Campbell, W. A. ; Dalya, G. ; Singh, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-fd6ced74817e1bbcc9338f829f48b5bcfca7b0e98f04716b605eb734adb205a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>astronomical black holes</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Aérospatiale, astronomie & astrophysique</topic><topic>dark matter</topic><topic>General Relativity and Quantum Cosmology</topic><topic>gravitational wave detection</topic><topic>gravitational wave sources</topic><topic>gravitational waves</topic><topic>massive compact halo objects</topic><topic>Physical, chemical, mathematical & earth Sciences</topic><topic>Physics</topic><topic>Physique, chimie, mathématiques & sciences de la terre</topic><topic>Solar Physics</topic><topic>Space science, astronomy & astrophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbott, B. P.</creatorcontrib><creatorcontrib>Abbott, R.</creatorcontrib><creatorcontrib>Abbott, T. D.</creatorcontrib><creatorcontrib>Abraham, S.</creatorcontrib><creatorcontrib>Acernese, F.</creatorcontrib><creatorcontrib>Ackley, K.</creatorcontrib><creatorcontrib>Adams, C.</creatorcontrib><creatorcontrib>Adhikari, R. X.</creatorcontrib><creatorcontrib>Adya, V. B.</creatorcontrib><creatorcontrib>Affeldt, C.</creatorcontrib><creatorcontrib>Agathos, M.</creatorcontrib><creatorcontrib>Agatsuma, K.</creatorcontrib><creatorcontrib>Aggarwal, N.</creatorcontrib><creatorcontrib>Aguiar, O. D.</creatorcontrib><creatorcontrib>Aiello, L.</creatorcontrib><creatorcontrib>Ain, A.</creatorcontrib><creatorcontrib>Ajith, P.</creatorcontrib><creatorcontrib>Allen, G.</creatorcontrib><creatorcontrib>Allocca, A.</creatorcontrib><creatorcontrib>Aloy, M. A.</creatorcontrib><creatorcontrib>Altin, P. A.</creatorcontrib><creatorcontrib>Amato, A.</creatorcontrib><creatorcontrib>Anand, S.</creatorcontrib><creatorcontrib>Ananyeva, A.</creatorcontrib><creatorcontrib>Anderson, S. B.</creatorcontrib><creatorcontrib>Anderson, W. G.</creatorcontrib><creatorcontrib>Angelova, S. V.</creatorcontrib><creatorcontrib>Antier, S.</creatorcontrib><creatorcontrib>Appert, S.</creatorcontrib><creatorcontrib>Arai, K.</creatorcontrib><creatorcontrib>Araya, M. C.</creatorcontrib><creatorcontrib>Areeda, J. S.</creatorcontrib><creatorcontrib>Arène, M.</creatorcontrib><creatorcontrib>Arnaud, N.</creatorcontrib><creatorcontrib>Campbell, W. A.</creatorcontrib><creatorcontrib>Dalya, G.</creatorcontrib><creatorcontrib>Singh, D.</creatorcontrib><creatorcontrib>LIGO Scientific Collaboration and the Virgo Collaboration</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbott, B. P.</au><au>Abbott, R.</au><au>Abbott, T. D.</au><au>Abraham, S.</au><au>Acernese, F.</au><au>Ackley, K.</au><au>Adams, C.</au><au>Adhikari, R. X.</au><au>Adya, V. B.</au><au>Affeldt, C.</au><au>Agathos, M.</au><au>Agatsuma, K.</au><au>Aggarwal, N.</au><au>Aguiar, O. D.</au><au>Aiello, L.</au><au>Ain, A.</au><au>Ajith, P.</au><au>Allen, G.</au><au>Allocca, A.</au><au>Aloy, M. A.</au><au>Altin, P. A.</au><au>Amato, A.</au><au>Anand, S.</au><au>Ananyeva, A.</au><au>Anderson, S. B.</au><au>Anderson, W. G.</au><au>Angelova, S. V.</au><au>Antier, S.</au><au>Appert, S.</au><au>Arai, K.</au><au>Araya, M. C.</au><au>Areeda, J. S.</au><au>Arène, M.</au><au>Arnaud, N.</au><au>Campbell, W. A.</au><au>Dalya, G.</au><au>Singh, D.</au><aucorp>LIGO Scientific Collaboration and the Virgo Collaboration</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO’s Second Observing Run</atitle><jtitle>Physical review letters</jtitle><date>2019-10-18</date><risdate>2019</risdate><volume>123</volume><issue>16</issue><spage>161102</spage><epage>161102</epage><pages>161102-161102</pages><artnum>161102</artnum><issn>0031-9007</issn><issn>1079-7114</issn><eissn>1079-7114</eissn><abstract>We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO’s second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between 0.2 M⊙–1.0 M⊙. We use the null result to constrain the binary merger rate of (0.2 M⊙, 0.2 M⊙) binaries to be less than 3.7×105 Gpc−3 yr−1 and the binary merger rate of (1.0 M⊙, 1.0 M⊙) binaries to be less than 5.2×103 Gpc−3 yr−1. Subsolar mass ultracompact objects are not expected to form via known stellar evolution channels, though it has been suggested that primordial density fluctuations or particle dark matter with cooling mechanisms and/or nuclear interactions could form black holes with subsolar masses. Assuming a particular primordial black hole (PBH) formation model, we constrain a population of merging 0.2 M⊙ black holes to account for less than 16% of the dark matter density and a population of merging 1.0 M⊙ black holes to account for less than 2% of the dark matter density. We discuss how constraints on the merger rate and dark matter fraction may be extended to arbitrary black hole population models that predict subsolar mass binaries.</abstract><cop>Goddard Space Flight Center</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.123.161102</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3952-5985</orcidid><orcidid>https://orcid.org/0000-0002-7930-9347</orcidid><orcidid>https://orcid.org/0000-0002-4341-2860</orcidid><orcidid>https://orcid.org/0000-0001-9432-7108</orcidid><orcidid>https://orcid.org/0000-0001-7292-9271</orcidid><orcidid>https://orcid.org/0000-0002-8454-7497</orcidid><orcidid>https://orcid.org/0000-0003-2572-3101</orcidid><orcidid>https://orcid.org/0000-0001-6487-5197</orcidid><orcidid>https://orcid.org/0000-0001-7469-4250</orcidid><orcidid>https://orcid.org/0000-0003-1350-2037</orcidid><orcidid>https://orcid.org/0000-0003-0589-9687</orcidid><orcidid>https://orcid.org/0000-0002-1852-2507</orcidid><orcidid>https://orcid.org/0000-0001-6589-8673</orcidid><orcidid>https://orcid.org/0000-0003-1714-365X</orcidid><orcidid>https://orcid.org/0000-0002-1421-4996</orcidid><orcidid>https://orcid.org/0000-0002-0685-8310</orcidid><orcidid>https://orcid.org/0000-0001-5078-9044</orcidid><orcidid>https://orcid.org/0000-0002-1019-6911</orcidid><orcidid>https://orcid.org/0000-0003-3133-3660</orcidid><orcidid>https://orcid.org/0000-0002-6253-3190</orcidid><orcidid>https://orcid.org/0000-0003-3768-9908</orcidid><orcidid>https://orcid.org/0000-0002-1180-4050</orcidid><orcidid>https://orcid.org/0000-0002-4298-5130</orcidid><orcidid>https://orcid.org/0000-0001-6796-7572</orcidid><orcidid>https://orcid.org/0000-0002-3658-7240</orcidid><orcidid>https://orcid.org/0000-0002-9964-8469</orcidid><orcidid>https://orcid.org/0000-0001-6354-8514</orcidid><orcidid>https://orcid.org/0000-0002-9293-8439</orcidid><orcidid>https://orcid.org/0000-0002-7686-3334</orcidid><orcidid>https://orcid.org/0000-0002-2002-1701</orcidid><orcidid>https://orcid.org/0000-0002-4991-8213</orcidid><orcidid>https://orcid.org/0000-0002-5394-6890</orcidid><orcidid>https://orcid.org/0000-0002-4618-1674</orcidid><orcidid>https://orcid.org/0000-0001-9157-4349</orcidid><orcidid>https://orcid.org/0000-0001-5860-1157</orcidid><orcidid>https://orcid.org/0000-0002-4918-0247</orcidid><orcidid>https://orcid.org/0000-0003-2112-0653</orcidid><orcidid>https://orcid.org/000000019769531X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2019-10, Vol.123 (16), p.161102-161102, Article 161102 |
issn | 0031-9007 1079-7114 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1603533 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | astronomical black holes ASTRONOMY AND ASTROPHYSICS Astrophysics Aérospatiale, astronomie & astrophysique dark matter General Relativity and Quantum Cosmology gravitational wave detection gravitational wave sources gravitational waves massive compact halo objects Physical, chemical, mathematical & earth Sciences Physics Physique, chimie, mathématiques & sciences de la terre Solar Physics Space science, astronomy & astrophysics |
title | Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO’s Second Observing Run |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-06T13%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Search%20for%20Subsolar%20Mass%20Ultracompact%20Binaries%20in%20Advanced%20LIGO%E2%80%99s%20Second%20Observing%20Run&rft.jtitle=Physical%20review%20letters&rft.au=Abbott,%20B.%20P.&rft.aucorp=LIGO%20Scientific%20Collaboration%20and%20the%20Virgo%20Collaboration&rft.date=2019-10-18&rft.volume=123&rft.issue=16&rft.spage=161102&rft.epage=161102&rft.pages=161102-161102&rft.artnum=161102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.161102&rft_dat=%3Cproquest_osti_%3E2313362935%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-fd6ced74817e1bbcc9338f829f48b5bcfca7b0e98f04716b605eb734adb205a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2313362935&rft_id=info:pmid/&rfr_iscdi=true |