Loading…

High temperature steam oxidation dynamics of U3Si2 with alloying additions: Al, Cr, and Y

Uranium silicides are considered for advanced technology reactor fuels due to their enhanced thermal conductivity and high uranium density (U3Si and U3Si2) compared to traditional UO2. Susceptibility to oxidation and wash out, in the event of a cladding breech, could limit the potential for deployme...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2020-05, Vol.533 (C), p.152072, Article 152072
Main Authors: Wood, E. Sooby, Moczygemba, C., Robles, G., Acosta, Z., Brigham, B.A., Grote, C.J., Metzger, K.E., Cai, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Uranium silicides are considered for advanced technology reactor fuels due to their enhanced thermal conductivity and high uranium density (U3Si and U3Si2) compared to traditional UO2. Susceptibility to oxidation and wash out, in the event of a cladding breech, could limit the potential for deployment of silicides as accident tolerant fuels. Mitigating the water reaction for U3Si2 could enable its use as an accident tolerant, high uranium density fuel or as a composite fuel constituent. Reported here is the impact of alloying additions of Al, Cr and Y on the high temperature, steam oxidation response of U3Si2. In addition to the thermogravimetric response, as melted microstructures, phase compositions and post oxidation analysis are also presented. The investigation shows steam oxidation dynamics are altered, from non-alloyed U3Si2, under thermally ramped conditions. However, additional alloy development of these fuel forms is necessary for further consideration as candidate accident tolerant fuels in water-cooled reactor designs.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2020.152072