Loading…

Titanium 3d ferromagnetism with perpendicular anisotropy in defective anatase

This work focuses on the generation of ferromagnetism at the surface of anatase TiO2 films by low-energy ion irradiation. Controlled Ar+-ion irradiation resulted in a thin (∼10) nm ferromagnetic surface layer. The intrinsic origin and robustness of the magnetic order has been characterized by x-ray...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2020-01, Vol.101 (1), p.1
Main Authors: Stiller, Markus, N'Diaye, Alpha T, Ohldag, Hendrik, Barzola-Quiquia, José, Esquinazi, Pablo D, Amelal, Thomas, Bundesmann, Carsten, Spemann, Daniel, Trautmann, Martin, Chassé, Angelika, Hamed, Hichem Ben, Adeagbo, Waheed A, Hergert, Wolfram
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page 1
container_title Physical review. B
container_volume 101
creator Stiller, Markus
N'Diaye, Alpha T
Ohldag, Hendrik
Barzola-Quiquia, José
Esquinazi, Pablo D
Amelal, Thomas
Bundesmann, Carsten
Spemann, Daniel
Trautmann, Martin
Chassé, Angelika
Hamed, Hichem Ben
Adeagbo, Waheed A
Hergert, Wolfram
description This work focuses on the generation of ferromagnetism at the surface of anatase TiO2 films by low-energy ion irradiation. Controlled Ar+-ion irradiation resulted in a thin (∼10) nm ferromagnetic surface layer. The intrinsic origin and robustness of the magnetic order has been characterized by x-ray magnetic circular dichroism at room temperature revealing that a Ti band is spin-polarized. These results, together with density functional theory calculations, indicate that Ti vacancy-interstitial pairs are responsible for the magnetic order. Superconducting quantum interference device measurements show the existence of a perpendicular magnetic anisotropy and a low remanent magnetization. Magnetic force microscopy reveals that this low remanence is due to oppositely aligned magnetic domains with magnetization vectors normal to the main surface. The weak domain-wall pinning, the magnetic anisotropy, together with the simplicity of the preparation method, open up interesting possibilities for future applications. As an example, single domain patterns of ∼1μm width and several μm length can be easily prepared.
doi_str_mv 10.1103/PhysRevB.101.014412
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1605015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350925689</sourcerecordid><originalsourceid>FETCH-LOGICAL-o210t-1e250d1122d86158f1510d15523d6b4dd76c0d8e48aba1363b9dbb9fecaf2ce83</originalsourceid><addsrcrecordid>eNo9j81OwzAQhC0EElXpE3CJ4Jyya8dufISKP6kIhMo5cuINddXGIXZAfXssFXGa3dGn3RnGLhHmiCBu3jaH8E7fd3MEnAMWBfITNuGF0rnWSp_-zxLO2SyELQCgAr0APWEvaxdN58Z9JmzW0jD4vfnsKLqwz35c3GQ9DT111jXjzgxZQoOPg-8PmesySy010X1T8k00gS7YWWt2gWZ_OmUfD_fr5VO-en18Xt6ucs8RYo7EJVhEzm2pUJYtSky7lFxYVRfWLlQDtqSiNLVBoUStbV3r9My0vKFSTNnV8a4P0VWhcZGaTeO7LsWpUjcJKBN0fYT6wX-NFGK19ePQpVwVFxI0l6rU4hffCF9f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350925689</pqid></control><display><type>article</type><title>Titanium 3d ferromagnetism with perpendicular anisotropy in defective anatase</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Stiller, Markus ; N'Diaye, Alpha T ; Ohldag, Hendrik ; Barzola-Quiquia, José ; Esquinazi, Pablo D ; Amelal, Thomas ; Bundesmann, Carsten ; Spemann, Daniel ; Trautmann, Martin ; Chassé, Angelika ; Hamed, Hichem Ben ; Adeagbo, Waheed A ; Hergert, Wolfram</creator><creatorcontrib>Stiller, Markus ; N'Diaye, Alpha T ; Ohldag, Hendrik ; Barzola-Quiquia, José ; Esquinazi, Pablo D ; Amelal, Thomas ; Bundesmann, Carsten ; Spemann, Daniel ; Trautmann, Martin ; Chassé, Angelika ; Hamed, Hichem Ben ; Adeagbo, Waheed A ; Hergert, Wolfram ; SLAC National Accelerator Lab., Menlo Park, CA (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>This work focuses on the generation of ferromagnetism at the surface of anatase TiO2 films by low-energy ion irradiation. Controlled Ar+-ion irradiation resulted in a thin (∼10) nm ferromagnetic surface layer. The intrinsic origin and robustness of the magnetic order has been characterized by x-ray magnetic circular dichroism at room temperature revealing that a Ti band is spin-polarized. These results, together with density functional theory calculations, indicate that Ti vacancy-interstitial pairs are responsible for the magnetic order. Superconducting quantum interference device measurements show the existence of a perpendicular magnetic anisotropy and a low remanent magnetization. Magnetic force microscopy reveals that this low remanence is due to oppositely aligned magnetic domains with magnetization vectors normal to the main surface. The weak domain-wall pinning, the magnetic anisotropy, together with the simplicity of the preparation method, open up interesting possibilities for future applications. As an example, single domain patterns of ∼1μm width and several μm length can be easily prepared.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.014412</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anatase ; Anisotropy ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Defects ; Density functional calculations ; Density functional theory ; Dichroism ; Domain walls ; Ferromagnetism ; Ion irradiation ; Irradiation effects ; Magnetic anisotropy ; Magnetic domains ; Magnetic fields ; Magnetism ; Magnetization ; Remanence ; Room temperature ; Superconducting quantum interference devices ; Surface layers ; Titanium ; Titanium dioxide ; X-ray magnetic circular dichroism</subject><ispartof>Physical review. B, 2020-01, Vol.101 (1), p.1</ispartof><rights>Copyright American Physical Society Jan 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000270774162 ; 0000000265022118 ; 0000000317164493 ; 000000031415250X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1605015$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stiller, Markus</creatorcontrib><creatorcontrib>N'Diaye, Alpha T</creatorcontrib><creatorcontrib>Ohldag, Hendrik</creatorcontrib><creatorcontrib>Barzola-Quiquia, José</creatorcontrib><creatorcontrib>Esquinazi, Pablo D</creatorcontrib><creatorcontrib>Amelal, Thomas</creatorcontrib><creatorcontrib>Bundesmann, Carsten</creatorcontrib><creatorcontrib>Spemann, Daniel</creatorcontrib><creatorcontrib>Trautmann, Martin</creatorcontrib><creatorcontrib>Chassé, Angelika</creatorcontrib><creatorcontrib>Hamed, Hichem Ben</creatorcontrib><creatorcontrib>Adeagbo, Waheed A</creatorcontrib><creatorcontrib>Hergert, Wolfram</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Titanium 3d ferromagnetism with perpendicular anisotropy in defective anatase</title><title>Physical review. B</title><description>This work focuses on the generation of ferromagnetism at the surface of anatase TiO2 films by low-energy ion irradiation. Controlled Ar+-ion irradiation resulted in a thin (∼10) nm ferromagnetic surface layer. The intrinsic origin and robustness of the magnetic order has been characterized by x-ray magnetic circular dichroism at room temperature revealing that a Ti band is spin-polarized. These results, together with density functional theory calculations, indicate that Ti vacancy-interstitial pairs are responsible for the magnetic order. Superconducting quantum interference device measurements show the existence of a perpendicular magnetic anisotropy and a low remanent magnetization. Magnetic force microscopy reveals that this low remanence is due to oppositely aligned magnetic domains with magnetization vectors normal to the main surface. The weak domain-wall pinning, the magnetic anisotropy, together with the simplicity of the preparation method, open up interesting possibilities for future applications. As an example, single domain patterns of ∼1μm width and several μm length can be easily prepared.</description><subject>Anatase</subject><subject>Anisotropy</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Defects</subject><subject>Density functional calculations</subject><subject>Density functional theory</subject><subject>Dichroism</subject><subject>Domain walls</subject><subject>Ferromagnetism</subject><subject>Ion irradiation</subject><subject>Irradiation effects</subject><subject>Magnetic anisotropy</subject><subject>Magnetic domains</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Remanence</subject><subject>Room temperature</subject><subject>Superconducting quantum interference devices</subject><subject>Surface layers</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>X-ray magnetic circular dichroism</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9j81OwzAQhC0EElXpE3CJ4Jyya8dufISKP6kIhMo5cuINddXGIXZAfXssFXGa3dGn3RnGLhHmiCBu3jaH8E7fd3MEnAMWBfITNuGF0rnWSp_-zxLO2SyELQCgAr0APWEvaxdN58Z9JmzW0jD4vfnsKLqwz35c3GQ9DT111jXjzgxZQoOPg-8PmesySy010X1T8k00gS7YWWt2gWZ_OmUfD_fr5VO-en18Xt6ucs8RYo7EJVhEzm2pUJYtSky7lFxYVRfWLlQDtqSiNLVBoUStbV3r9My0vKFSTNnV8a4P0VWhcZGaTeO7LsWpUjcJKBN0fYT6wX-NFGK19ePQpVwVFxI0l6rU4hffCF9f</recordid><startdate>20200109</startdate><enddate>20200109</enddate><creator>Stiller, Markus</creator><creator>N'Diaye, Alpha T</creator><creator>Ohldag, Hendrik</creator><creator>Barzola-Quiquia, José</creator><creator>Esquinazi, Pablo D</creator><creator>Amelal, Thomas</creator><creator>Bundesmann, Carsten</creator><creator>Spemann, Daniel</creator><creator>Trautmann, Martin</creator><creator>Chassé, Angelika</creator><creator>Hamed, Hichem Ben</creator><creator>Adeagbo, Waheed A</creator><creator>Hergert, Wolfram</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000270774162</orcidid><orcidid>https://orcid.org/0000000265022118</orcidid><orcidid>https://orcid.org/0000000317164493</orcidid><orcidid>https://orcid.org/000000031415250X</orcidid></search><sort><creationdate>20200109</creationdate><title>Titanium 3d ferromagnetism with perpendicular anisotropy in defective anatase</title><author>Stiller, Markus ; N'Diaye, Alpha T ; Ohldag, Hendrik ; Barzola-Quiquia, José ; Esquinazi, Pablo D ; Amelal, Thomas ; Bundesmann, Carsten ; Spemann, Daniel ; Trautmann, Martin ; Chassé, Angelika ; Hamed, Hichem Ben ; Adeagbo, Waheed A ; Hergert, Wolfram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o210t-1e250d1122d86158f1510d15523d6b4dd76c0d8e48aba1363b9dbb9fecaf2ce83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anatase</topic><topic>Anisotropy</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Defects</topic><topic>Density functional calculations</topic><topic>Density functional theory</topic><topic>Dichroism</topic><topic>Domain walls</topic><topic>Ferromagnetism</topic><topic>Ion irradiation</topic><topic>Irradiation effects</topic><topic>Magnetic anisotropy</topic><topic>Magnetic domains</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Remanence</topic><topic>Room temperature</topic><topic>Superconducting quantum interference devices</topic><topic>Surface layers</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>X-ray magnetic circular dichroism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stiller, Markus</creatorcontrib><creatorcontrib>N'Diaye, Alpha T</creatorcontrib><creatorcontrib>Ohldag, Hendrik</creatorcontrib><creatorcontrib>Barzola-Quiquia, José</creatorcontrib><creatorcontrib>Esquinazi, Pablo D</creatorcontrib><creatorcontrib>Amelal, Thomas</creatorcontrib><creatorcontrib>Bundesmann, Carsten</creatorcontrib><creatorcontrib>Spemann, Daniel</creatorcontrib><creatorcontrib>Trautmann, Martin</creatorcontrib><creatorcontrib>Chassé, Angelika</creatorcontrib><creatorcontrib>Hamed, Hichem Ben</creatorcontrib><creatorcontrib>Adeagbo, Waheed A</creatorcontrib><creatorcontrib>Hergert, Wolfram</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stiller, Markus</au><au>N'Diaye, Alpha T</au><au>Ohldag, Hendrik</au><au>Barzola-Quiquia, José</au><au>Esquinazi, Pablo D</au><au>Amelal, Thomas</au><au>Bundesmann, Carsten</au><au>Spemann, Daniel</au><au>Trautmann, Martin</au><au>Chassé, Angelika</au><au>Hamed, Hichem Ben</au><au>Adeagbo, Waheed A</au><au>Hergert, Wolfram</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Titanium 3d ferromagnetism with perpendicular anisotropy in defective anatase</atitle><jtitle>Physical review. B</jtitle><date>2020-01-09</date><risdate>2020</risdate><volume>101</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>This work focuses on the generation of ferromagnetism at the surface of anatase TiO2 films by low-energy ion irradiation. Controlled Ar+-ion irradiation resulted in a thin (∼10) nm ferromagnetic surface layer. The intrinsic origin and robustness of the magnetic order has been characterized by x-ray magnetic circular dichroism at room temperature revealing that a Ti band is spin-polarized. These results, together with density functional theory calculations, indicate that Ti vacancy-interstitial pairs are responsible for the magnetic order. Superconducting quantum interference device measurements show the existence of a perpendicular magnetic anisotropy and a low remanent magnetization. Magnetic force microscopy reveals that this low remanence is due to oppositely aligned magnetic domains with magnetization vectors normal to the main surface. The weak domain-wall pinning, the magnetic anisotropy, together with the simplicity of the preparation method, open up interesting possibilities for future applications. As an example, single domain patterns of ∼1μm width and several μm length can be easily prepared.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.101.014412</doi><orcidid>https://orcid.org/0000000270774162</orcidid><orcidid>https://orcid.org/0000000265022118</orcidid><orcidid>https://orcid.org/0000000317164493</orcidid><orcidid>https://orcid.org/000000031415250X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-01, Vol.101 (1), p.1
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1605015
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Anatase
Anisotropy
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Defects
Density functional calculations
Density functional theory
Dichroism
Domain walls
Ferromagnetism
Ion irradiation
Irradiation effects
Magnetic anisotropy
Magnetic domains
Magnetic fields
Magnetism
Magnetization
Remanence
Room temperature
Superconducting quantum interference devices
Surface layers
Titanium
Titanium dioxide
X-ray magnetic circular dichroism
title Titanium 3d ferromagnetism with perpendicular anisotropy in defective anatase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Titanium%203d%20ferromagnetism%20with%20perpendicular%20anisotropy%20in%20defective%20anatase&rft.jtitle=Physical%20review.%20B&rft.au=Stiller,%20Markus&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-01-09&rft.volume=101&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.014412&rft_dat=%3Cproquest_osti_%3E2350925689%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o210t-1e250d1122d86158f1510d15523d6b4dd76c0d8e48aba1363b9dbb9fecaf2ce83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350925689&rft_id=info:pmid/&rfr_iscdi=true