Loading…

Static and dynamic properties of multi-ionic plasma mixtures

Complex plasma mixtures with three or more components are often encountered in astrophysics or in inertial confinement fusion (ICF) experiments. For mixtures containing species with large differences in atomic number Z, the modeling needs to consider at the same time the kinetic theory for low-Z ele...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2020-03, Vol.101 (3-1), p.033207-033207, Article 033207
Main Authors: Clérouin, Jean, Arnault, Philippe, Gréa, Benoit-Joseph, Guisset, Sébastien, Vandenboomgaerde, Marc, White, Alexander J, Collins, Lee A, Kress, Joel D, Ticknor, Christopher
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-97d1b01247db68e3a6b36f777fe6d88213323db105dae3db5d85cd89f6760a163
cites cdi_FETCH-LOGICAL-c427t-97d1b01247db68e3a6b36f777fe6d88213323db105dae3db5d85cd89f6760a163
container_end_page 033207
container_issue 3-1
container_start_page 033207
container_title Physical review. E
container_volume 101
creator Clérouin, Jean
Arnault, Philippe
Gréa, Benoit-Joseph
Guisset, Sébastien
Vandenboomgaerde, Marc
White, Alexander J
Collins, Lee A
Kress, Joel D
Ticknor, Christopher
description Complex plasma mixtures with three or more components are often encountered in astrophysics or in inertial confinement fusion (ICF) experiments. For mixtures containing species with large differences in atomic number Z, the modeling needs to consider at the same time the kinetic theory for low-Z elements combined with the theory of strongly coupled plasma for high-Z elements, as well as all the intermediate situations that can appear in multicomponent systems. For such cases, we study the pair distribution functions, self-diffusions, mutual diffusion, and viscosity for ternary mixtures at extreme conditions. These quantities can be produced from first principles using orbital free molecular dynamics at the computational expense of very intensive simulations to reach good statistics. Utilizing the first-principles results as reference data, we assess the merit of a global analytic model for transport coefficients, "pseudo-ions in jellium" (PIJ), based on an isoelectronic assumption (iso-n_{e}). With a multicomponent hypernetted-chain integral equation, we verify the quality of the iso-n_{e} prescription for describing the static structure of the mixtures. This semianalytical modeling compares well with the simulation results and allows one to consider plasma mixtures not accessible to simulations. Applications are given for the mix of materials in ICF experiments. A reduction of a multicomponent mixture to an effective binary mixture is also established in the hydrodynamic limit and compared with PIJ estimations for ICF relevant mixtures.
doi_str_mv 10.1103/PhysRevE.101.033207
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1605315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390147841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-97d1b01247db68e3a6b36f777fe6d88213323db105dae3db5d85cd89f6760a163</originalsourceid><addsrcrecordid>eNo9UMtqwzAQFKWlCWm-oFBMT7043bVsyYZeSkkfEGjp4yxkSSYqfqSWXJq_r4KTnHbYndmdHUIuERaIQG_f1lv3bn6XCwRcAKUJ8BMyTVIOMUBGT484zSZk7tw3ACCDgmNyTiY0SfKiQDYldx9eeqsi2epIb1vZBLzpu43pvTUu6qqoGWpvY9u1u0ktXSOjxv75oTfugpxVsnZmvq8z8vW4_Hx4jlevTy8P96tYpQn3ccE1loDBkC5ZbqhkJWUV57wyTOd5gsE-1SVCpqUJINN5pnReVIwzkMjojFyPezvnrXDKeqPWqmtbo7wIX2UUs0C6GUnB_s9gnBeNdcrUtWxNNziR0AIw5XmKgUpHquo753pTiU1vG9lvBYLYxSsO8YYGijHeoLraHxjKxuij5hAm_QfnWXYj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390147841</pqid></control><display><type>article</type><title>Static and dynamic properties of multi-ionic plasma mixtures</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Clérouin, Jean ; Arnault, Philippe ; Gréa, Benoit-Joseph ; Guisset, Sébastien ; Vandenboomgaerde, Marc ; White, Alexander J ; Collins, Lee A ; Kress, Joel D ; Ticknor, Christopher</creator><creatorcontrib>Clérouin, Jean ; Arnault, Philippe ; Gréa, Benoit-Joseph ; Guisset, Sébastien ; Vandenboomgaerde, Marc ; White, Alexander J ; Collins, Lee A ; Kress, Joel D ; Ticknor, Christopher</creatorcontrib><description>Complex plasma mixtures with three or more components are often encountered in astrophysics or in inertial confinement fusion (ICF) experiments. For mixtures containing species with large differences in atomic number Z, the modeling needs to consider at the same time the kinetic theory for low-Z elements combined with the theory of strongly coupled plasma for high-Z elements, as well as all the intermediate situations that can appear in multicomponent systems. For such cases, we study the pair distribution functions, self-diffusions, mutual diffusion, and viscosity for ternary mixtures at extreme conditions. These quantities can be produced from first principles using orbital free molecular dynamics at the computational expense of very intensive simulations to reach good statistics. Utilizing the first-principles results as reference data, we assess the merit of a global analytic model for transport coefficients, "pseudo-ions in jellium" (PIJ), based on an isoelectronic assumption (iso-n_{e}). With a multicomponent hypernetted-chain integral equation, we verify the quality of the iso-n_{e} prescription for describing the static structure of the mixtures. This semianalytical modeling compares well with the simulation results and allows one to consider plasma mixtures not accessible to simulations. Applications are given for the mix of materials in ICF experiments. A reduction of a multicomponent mixture to an effective binary mixture is also established in the hydrodynamic limit and compared with PIJ estimations for ICF relevant mixtures.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.101.033207</identifier><identifier>PMID: 32289916</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><ispartof>Physical review. E, 2020-03, Vol.101 (3-1), p.033207-033207, Article 033207</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-97d1b01247db68e3a6b36f777fe6d88213323db105dae3db5d85cd89f6760a163</citedby><cites>FETCH-LOGICAL-c427t-97d1b01247db68e3a6b36f777fe6d88213323db105dae3db5d85cd89f6760a163</cites><orcidid>0000-0003-2144-2759 ; 0000-0001-9972-4524 ; 0000-0002-8180-9367 ; 0000-0002-8769-2104 ; 0000000321442759 ; 0000000287692104 ; 0000000281809367 ; 0000000199724524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32289916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1605315$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Clérouin, Jean</creatorcontrib><creatorcontrib>Arnault, Philippe</creatorcontrib><creatorcontrib>Gréa, Benoit-Joseph</creatorcontrib><creatorcontrib>Guisset, Sébastien</creatorcontrib><creatorcontrib>Vandenboomgaerde, Marc</creatorcontrib><creatorcontrib>White, Alexander J</creatorcontrib><creatorcontrib>Collins, Lee A</creatorcontrib><creatorcontrib>Kress, Joel D</creatorcontrib><creatorcontrib>Ticknor, Christopher</creatorcontrib><title>Static and dynamic properties of multi-ionic plasma mixtures</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Complex plasma mixtures with three or more components are often encountered in astrophysics or in inertial confinement fusion (ICF) experiments. For mixtures containing species with large differences in atomic number Z, the modeling needs to consider at the same time the kinetic theory for low-Z elements combined with the theory of strongly coupled plasma for high-Z elements, as well as all the intermediate situations that can appear in multicomponent systems. For such cases, we study the pair distribution functions, self-diffusions, mutual diffusion, and viscosity for ternary mixtures at extreme conditions. These quantities can be produced from first principles using orbital free molecular dynamics at the computational expense of very intensive simulations to reach good statistics. Utilizing the first-principles results as reference data, we assess the merit of a global analytic model for transport coefficients, "pseudo-ions in jellium" (PIJ), based on an isoelectronic assumption (iso-n_{e}). With a multicomponent hypernetted-chain integral equation, we verify the quality of the iso-n_{e} prescription for describing the static structure of the mixtures. This semianalytical modeling compares well with the simulation results and allows one to consider plasma mixtures not accessible to simulations. Applications are given for the mix of materials in ICF experiments. A reduction of a multicomponent mixture to an effective binary mixture is also established in the hydrodynamic limit and compared with PIJ estimations for ICF relevant mixtures.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9UMtqwzAQFKWlCWm-oFBMT7043bVsyYZeSkkfEGjp4yxkSSYqfqSWXJq_r4KTnHbYndmdHUIuERaIQG_f1lv3bn6XCwRcAKUJ8BMyTVIOMUBGT484zSZk7tw3ACCDgmNyTiY0SfKiQDYldx9eeqsi2epIb1vZBLzpu43pvTUu6qqoGWpvY9u1u0ktXSOjxv75oTfugpxVsnZmvq8z8vW4_Hx4jlevTy8P96tYpQn3ccE1loDBkC5ZbqhkJWUV57wyTOd5gsE-1SVCpqUJINN5pnReVIwzkMjojFyPezvnrXDKeqPWqmtbo7wIX2UUs0C6GUnB_s9gnBeNdcrUtWxNNziR0AIw5XmKgUpHquo753pTiU1vG9lvBYLYxSsO8YYGijHeoLraHxjKxuij5hAm_QfnWXYj</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Clérouin, Jean</creator><creator>Arnault, Philippe</creator><creator>Gréa, Benoit-Joseph</creator><creator>Guisset, Sébastien</creator><creator>Vandenboomgaerde, Marc</creator><creator>White, Alexander J</creator><creator>Collins, Lee A</creator><creator>Kress, Joel D</creator><creator>Ticknor, Christopher</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2144-2759</orcidid><orcidid>https://orcid.org/0000-0001-9972-4524</orcidid><orcidid>https://orcid.org/0000-0002-8180-9367</orcidid><orcidid>https://orcid.org/0000-0002-8769-2104</orcidid><orcidid>https://orcid.org/0000000321442759</orcidid><orcidid>https://orcid.org/0000000287692104</orcidid><orcidid>https://orcid.org/0000000281809367</orcidid><orcidid>https://orcid.org/0000000199724524</orcidid></search><sort><creationdate>20200301</creationdate><title>Static and dynamic properties of multi-ionic plasma mixtures</title><author>Clérouin, Jean ; Arnault, Philippe ; Gréa, Benoit-Joseph ; Guisset, Sébastien ; Vandenboomgaerde, Marc ; White, Alexander J ; Collins, Lee A ; Kress, Joel D ; Ticknor, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-97d1b01247db68e3a6b36f777fe6d88213323db105dae3db5d85cd89f6760a163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clérouin, Jean</creatorcontrib><creatorcontrib>Arnault, Philippe</creatorcontrib><creatorcontrib>Gréa, Benoit-Joseph</creatorcontrib><creatorcontrib>Guisset, Sébastien</creatorcontrib><creatorcontrib>Vandenboomgaerde, Marc</creatorcontrib><creatorcontrib>White, Alexander J</creatorcontrib><creatorcontrib>Collins, Lee A</creatorcontrib><creatorcontrib>Kress, Joel D</creatorcontrib><creatorcontrib>Ticknor, Christopher</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clérouin, Jean</au><au>Arnault, Philippe</au><au>Gréa, Benoit-Joseph</au><au>Guisset, Sébastien</au><au>Vandenboomgaerde, Marc</au><au>White, Alexander J</au><au>Collins, Lee A</au><au>Kress, Joel D</au><au>Ticknor, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static and dynamic properties of multi-ionic plasma mixtures</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>101</volume><issue>3-1</issue><spage>033207</spage><epage>033207</epage><pages>033207-033207</pages><artnum>033207</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>Complex plasma mixtures with three or more components are often encountered in astrophysics or in inertial confinement fusion (ICF) experiments. For mixtures containing species with large differences in atomic number Z, the modeling needs to consider at the same time the kinetic theory for low-Z elements combined with the theory of strongly coupled plasma for high-Z elements, as well as all the intermediate situations that can appear in multicomponent systems. For such cases, we study the pair distribution functions, self-diffusions, mutual diffusion, and viscosity for ternary mixtures at extreme conditions. These quantities can be produced from first principles using orbital free molecular dynamics at the computational expense of very intensive simulations to reach good statistics. Utilizing the first-principles results as reference data, we assess the merit of a global analytic model for transport coefficients, "pseudo-ions in jellium" (PIJ), based on an isoelectronic assumption (iso-n_{e}). With a multicomponent hypernetted-chain integral equation, we verify the quality of the iso-n_{e} prescription for describing the static structure of the mixtures. This semianalytical modeling compares well with the simulation results and allows one to consider plasma mixtures not accessible to simulations. Applications are given for the mix of materials in ICF experiments. A reduction of a multicomponent mixture to an effective binary mixture is also established in the hydrodynamic limit and compared with PIJ estimations for ICF relevant mixtures.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>32289916</pmid><doi>10.1103/PhysRevE.101.033207</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2144-2759</orcidid><orcidid>https://orcid.org/0000-0001-9972-4524</orcidid><orcidid>https://orcid.org/0000-0002-8180-9367</orcidid><orcidid>https://orcid.org/0000-0002-8769-2104</orcidid><orcidid>https://orcid.org/0000000321442759</orcidid><orcidid>https://orcid.org/0000000287692104</orcidid><orcidid>https://orcid.org/0000000281809367</orcidid><orcidid>https://orcid.org/0000000199724524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2020-03, Vol.101 (3-1), p.033207-033207, Article 033207
issn 2470-0045
2470-0053
language eng
recordid cdi_osti_scitechconnect_1605315
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Static and dynamic properties of multi-ionic plasma mixtures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A20%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20and%20dynamic%20properties%20of%20multi-ionic%20plasma%20mixtures&rft.jtitle=Physical%20review.%20E&rft.au=Cl%C3%A9rouin,%20Jean&rft.date=2020-03-01&rft.volume=101&rft.issue=3-1&rft.spage=033207&rft.epage=033207&rft.pages=033207-033207&rft.artnum=033207&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.101.033207&rft_dat=%3Cproquest_osti_%3E2390147841%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-97d1b01247db68e3a6b36f777fe6d88213323db105dae3db5d85cd89f6760a163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2390147841&rft_id=info:pmid/32289916&rfr_iscdi=true