Loading…

Approaches toward lithium metal stabilization

Historically, batteries with lithium metal anodes have been a hazard, as the lithium becomes rough and eventually finely divided during cycling. The promise of higher energy density, however, continues to drive the search for novel approaches to manage this light and reactive material. Significant i...

Full description

Saved in:
Bibliographic Details
Published in:MRS bulletin 2018-10, Vol.43 (10), p.752-758
Main Author: Dudney, Nancy J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-d5efc41e3600a6c6073bf6984e87f5ea62bb4313d0789b5032043fb06b1a988e3
cites cdi_FETCH-LOGICAL-c414t-d5efc41e3600a6c6073bf6984e87f5ea62bb4313d0789b5032043fb06b1a988e3
container_end_page 758
container_issue 10
container_start_page 752
container_title MRS bulletin
container_volume 43
creator Dudney, Nancy J.
description Historically, batteries with lithium metal anodes have been a hazard, as the lithium becomes rough and eventually finely divided during cycling. The promise of higher energy density, however, continues to drive the search for novel approaches to manage this light and reactive material. Significant improvement has been achieved by designing new liquid-electrolyte compositions and interface barriers to stabilize the lithium in traditional batteries, but it is clear that solid-state batteries ensure a higher level of safety and perhaps higher energy density and lifetimes. The materials challenge then is to fabricate a cost-effective solid electrolyte that effectively maintains lithium as a dense uniform metal layer. This article describes the ideal cycling behavior of lithium and progress toward this goal of a solid electrolyte using glassy, ceramic, polymer, and composite electrolytes, as well as the challenges that continue to arise toward long-term, high-rate, and efficient cycling of lithium metal.
doi_str_mv 10.1557/mrs.2018.233
format article
fullrecord <record><control><sourceid>cambridge_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1607285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2018_233</cupid><sourcerecordid>10_1557_mrs_2018_233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-d5efc41e3600a6c6073bf6984e87f5ea62bb4313d0789b5032043fb06b1a988e3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQQIMoWKs3f8Di2V0nm4_NHkvRKhS86Dkk2WybsrspSYrorzelvYqnmcObB_MQusdQYcaapzHEqgYsqpqQCzTDLRElpjW7RDMQgpQNb-k1uolxB4AZNGyGysV-H7wyWxuL5L9U6IrBpa07jMVokxqKmJR2g_tRyfnpFl31aoj27jzn6PPl-WP5Wq7fV2_Lxbo0FNNUdsz2ebOEAyhuODRE97wV1IqmZ1bxWmtKMOmgEa1mQGqgpNfANVatEJbM0cPJ62NyMhqXrNkaP03WJImzrxYsQ48nyAQfY7C93Ac3qvAtMchjD5l7yGMPmXtkvDzhMWPTxga584cw5Tf-4quzXo06uG5j_zn4BWVCcMY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approaches toward lithium metal stabilization</title><source>Springer Nature</source><creator>Dudney, Nancy J.</creator><creatorcontrib>Dudney, Nancy J. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Historically, batteries with lithium metal anodes have been a hazard, as the lithium becomes rough and eventually finely divided during cycling. The promise of higher energy density, however, continues to drive the search for novel approaches to manage this light and reactive material. Significant improvement has been achieved by designing new liquid-electrolyte compositions and interface barriers to stabilize the lithium in traditional batteries, but it is clear that solid-state batteries ensure a higher level of safety and perhaps higher energy density and lifetimes. The materials challenge then is to fabricate a cost-effective solid electrolyte that effectively maintains lithium as a dense uniform metal layer. This article describes the ideal cycling behavior of lithium and progress toward this goal of a solid electrolyte using glassy, ceramic, polymer, and composite electrolytes, as well as the challenges that continue to arise toward long-term, high-rate, and efficient cycling of lithium metal.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2018.233</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Characterization and Evaluation of Materials ; electrodeposition ; Energy Materials ; ENERGY STORAGE ; Frontiers of Solid-State Batteries ; Materials Engineering ; Materials Science ; Nanotechnology ; passivation</subject><ispartof>MRS bulletin, 2018-10, Vol.43 (10), p.752-758</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-d5efc41e3600a6c6073bf6984e87f5ea62bb4313d0789b5032043fb06b1a988e3</citedby><cites>FETCH-LOGICAL-c414t-d5efc41e3600a6c6073bf6984e87f5ea62bb4313d0789b5032043fb06b1a988e3</cites><orcidid>0000000177296178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1607285$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dudney, Nancy J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Approaches toward lithium metal stabilization</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Historically, batteries with lithium metal anodes have been a hazard, as the lithium becomes rough and eventually finely divided during cycling. The promise of higher energy density, however, continues to drive the search for novel approaches to manage this light and reactive material. Significant improvement has been achieved by designing new liquid-electrolyte compositions and interface barriers to stabilize the lithium in traditional batteries, but it is clear that solid-state batteries ensure a higher level of safety and perhaps higher energy density and lifetimes. The materials challenge then is to fabricate a cost-effective solid electrolyte that effectively maintains lithium as a dense uniform metal layer. This article describes the ideal cycling behavior of lithium and progress toward this goal of a solid electrolyte using glassy, ceramic, polymer, and composite electrolytes, as well as the challenges that continue to arise toward long-term, high-rate, and efficient cycling of lithium metal.</description><subject>Applied and Technical Physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>electrodeposition</subject><subject>Energy Materials</subject><subject>ENERGY STORAGE</subject><subject>Frontiers of Solid-State Batteries</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>passivation</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQQIMoWKs3f8Di2V0nm4_NHkvRKhS86Dkk2WybsrspSYrorzelvYqnmcObB_MQusdQYcaapzHEqgYsqpqQCzTDLRElpjW7RDMQgpQNb-k1uolxB4AZNGyGysV-H7wyWxuL5L9U6IrBpa07jMVokxqKmJR2g_tRyfnpFl31aoj27jzn6PPl-WP5Wq7fV2_Lxbo0FNNUdsz2ebOEAyhuODRE97wV1IqmZ1bxWmtKMOmgEa1mQGqgpNfANVatEJbM0cPJ62NyMhqXrNkaP03WJImzrxYsQ48nyAQfY7C93Ac3qvAtMchjD5l7yGMPmXtkvDzhMWPTxga584cw5Tf-4quzXo06uG5j_zn4BWVCcMY</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Dudney, Nancy J.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Materials Research Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000177296178</orcidid></search><sort><creationdate>20181001</creationdate><title>Approaches toward lithium metal stabilization</title><author>Dudney, Nancy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-d5efc41e3600a6c6073bf6984e87f5ea62bb4313d0789b5032043fb06b1a988e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied and Technical Physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>electrodeposition</topic><topic>Energy Materials</topic><topic>ENERGY STORAGE</topic><topic>Frontiers of Solid-State Batteries</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>passivation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dudney, Nancy J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dudney, Nancy J.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaches toward lithium metal stabilization</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>43</volume><issue>10</issue><spage>752</spage><epage>758</epage><pages>752-758</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>Historically, batteries with lithium metal anodes have been a hazard, as the lithium becomes rough and eventually finely divided during cycling. The promise of higher energy density, however, continues to drive the search for novel approaches to manage this light and reactive material. Significant improvement has been achieved by designing new liquid-electrolyte compositions and interface barriers to stabilize the lithium in traditional batteries, but it is clear that solid-state batteries ensure a higher level of safety and perhaps higher energy density and lifetimes. The materials challenge then is to fabricate a cost-effective solid electrolyte that effectively maintains lithium as a dense uniform metal layer. This article describes the ideal cycling behavior of lithium and progress toward this goal of a solid electrolyte using glassy, ceramic, polymer, and composite electrolytes, as well as the challenges that continue to arise toward long-term, high-rate, and efficient cycling of lithium metal.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2018.233</doi><tpages>7</tpages><orcidid>https://orcid.org/0000000177296178</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7694
ispartof MRS bulletin, 2018-10, Vol.43 (10), p.752-758
issn 0883-7694
1938-1425
language eng
recordid cdi_osti_scitechconnect_1607285
source Springer Nature
subjects Applied and Technical Physics
Characterization and Evaluation of Materials
electrodeposition
Energy Materials
ENERGY STORAGE
Frontiers of Solid-State Batteries
Materials Engineering
Materials Science
Nanotechnology
passivation
title Approaches toward lithium metal stabilization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaches%20toward%20lithium%20metal%20stabilization&rft.jtitle=MRS%20bulletin&rft.au=Dudney,%20Nancy%20J.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2018-10-01&rft.volume=43&rft.issue=10&rft.spage=752&rft.epage=758&rft.pages=752-758&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/mrs.2018.233&rft_dat=%3Ccambridge_osti_%3E10_1557_mrs_2018_233%3C/cambridge_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-d5efc41e3600a6c6073bf6984e87f5ea62bb4313d0789b5032043fb06b1a988e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2018_233&rfr_iscdi=true