Loading…
Imaging quantum spin Hall edges in monolayer WTe 2
A two-dimensional (2D) topological insulator exhibits the quantum spin Hall (QSH) effect, in which topologically protected conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported in an atomically thin material, monolayer WTe . Here, we dir...
Saved in:
Published in: | Science advances 2019-02, Vol.5 (2), p.eaat8799 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2449-d8fb5680d30e448c1af03d715e8af3cea67e0f7bbe21cd26ef41c125ca2c09673 |
---|---|
cites | cdi_FETCH-LOGICAL-c2449-d8fb5680d30e448c1af03d715e8af3cea67e0f7bbe21cd26ef41c125ca2c09673 |
container_end_page | |
container_issue | 2 |
container_start_page | eaat8799 |
container_title | Science advances |
container_volume | 5 |
creator | Shi, Yanmeng Kahn, Joshua Niu, Ben Fei, Zaiyao Sun, Bosong Cai, Xinghan Francisco, Brian A Wu, Di Shen, Zhi-Xun Xu, Xiaodong Cobden, David H Cui, Yong-Tao |
description | A two-dimensional (2D) topological insulator exhibits the quantum spin Hall (QSH) effect, in which topologically protected conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported in an atomically thin material, monolayer WTe
. Here, we directly image the local conductivity of monolayer WTe
using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, and is suppressed by magnetic field as expected. We observe additional conducting features which can be explained by edge states following boundaries between topologically trivial and nontrivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe
. Meanwhile, they reveal the robustness of the QSH channels and the potential to engineer them in the monolayer material platform. |
doi_str_mv | 10.1126/sciadv.aat8799 |
format | article |
fullrecord | <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1610664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30783621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2449-d8fb5680d30e448c1af03d715e8af3cea67e0f7bbe21cd26ef41c125ca2c09673</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMottRePUrwvjWTZJPdoxS1hYKXiseQTSZ1ZT_qZiv037tlq3iad-B5B-Yh5BbYAoCrh-hK678X1vaZzvMLMuVCpwlPZXb5L0_IPMZPxhhIpVLIr8lEMJ0JxWFK-Lq2u7LZ0a-DbfpDTeO-bOjKVhVFv8NIh61um7ayR-zo-xYpvyFXwVYR5-c5I2_PT9vlKtm8vqyXj5vEcSnzxGehSFXGvGAoZebABia8hhQzG4RDqzSyoIsCOTjPFQYJDnjqLHcsV1rMyP14t419aYZfe3Qfrm0adL0BBUwpOUCLEXJdG2OHwey7srbd0QAzJ0lmlGTOkobC3VjYH4oa_R_-q0T8AALzYwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Imaging quantum spin Hall edges in monolayer WTe 2</title><source>PubMed Central (Open Access)</source><source>American Association for the Advancement of Science</source><creator>Shi, Yanmeng ; Kahn, Joshua ; Niu, Ben ; Fei, Zaiyao ; Sun, Bosong ; Cai, Xinghan ; Francisco, Brian A ; Wu, Di ; Shen, Zhi-Xun ; Xu, Xiaodong ; Cobden, David H ; Cui, Yong-Tao</creator><creatorcontrib>Shi, Yanmeng ; Kahn, Joshua ; Niu, Ben ; Fei, Zaiyao ; Sun, Bosong ; Cai, Xinghan ; Francisco, Brian A ; Wu, Di ; Shen, Zhi-Xun ; Xu, Xiaodong ; Cobden, David H ; Cui, Yong-Tao ; Univ. of Washington, Seattle, WA (United States)</creatorcontrib><description>A two-dimensional (2D) topological insulator exhibits the quantum spin Hall (QSH) effect, in which topologically protected conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported in an atomically thin material, monolayer WTe
. Here, we directly image the local conductivity of monolayer WTe
using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, and is suppressed by magnetic field as expected. We observe additional conducting features which can be explained by edge states following boundaries between topologically trivial and nontrivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe
. Meanwhile, they reveal the robustness of the QSH channels and the potential to engineer them in the monolayer material platform.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aat8799</identifier><identifier>PMID: 30783621</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Science & Technology - Other Topics</subject><ispartof>Science advances, 2019-02, Vol.5 (2), p.eaat8799</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2449-d8fb5680d30e448c1af03d715e8af3cea67e0f7bbe21cd26ef41c125ca2c09673</citedby><cites>FETCH-LOGICAL-c2449-d8fb5680d30e448c1af03d715e8af3cea67e0f7bbe21cd26ef41c125ca2c09673</cites><orcidid>0000-0002-9558-1375 ; 0000-0002-1454-0281 ; 0000-0002-8015-1049 ; 0000-0002-9274-2444 ; 0000-0002-7254-2728 ; 0000-0002-5648-0328 ; 0000-0003-0621-298X ; 0000-0003-0348-2095 ; 0000-0003-3619-1411 ; 0000000256480328 ; 0000000303482095 ; 0000000214540281 ; 0000000292742444 ; 000000030621298X ; 0000000295581375 ; 0000000336191411 ; 0000000272542728 ; 0000000280151049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30783621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1610664$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Yanmeng</creatorcontrib><creatorcontrib>Kahn, Joshua</creatorcontrib><creatorcontrib>Niu, Ben</creatorcontrib><creatorcontrib>Fei, Zaiyao</creatorcontrib><creatorcontrib>Sun, Bosong</creatorcontrib><creatorcontrib>Cai, Xinghan</creatorcontrib><creatorcontrib>Francisco, Brian A</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Shen, Zhi-Xun</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Cobden, David H</creatorcontrib><creatorcontrib>Cui, Yong-Tao</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><title>Imaging quantum spin Hall edges in monolayer WTe 2</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>A two-dimensional (2D) topological insulator exhibits the quantum spin Hall (QSH) effect, in which topologically protected conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported in an atomically thin material, monolayer WTe
. Here, we directly image the local conductivity of monolayer WTe
using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, and is suppressed by magnetic field as expected. We observe additional conducting features which can be explained by edge states following boundaries between topologically trivial and nontrivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe
. Meanwhile, they reveal the robustness of the QSH channels and the potential to engineer them in the monolayer material platform.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Science & Technology - Other Topics</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMottRePUrwvjWTZJPdoxS1hYKXiseQTSZ1ZT_qZiv037tlq3iad-B5B-Yh5BbYAoCrh-hK678X1vaZzvMLMuVCpwlPZXb5L0_IPMZPxhhIpVLIr8lEMJ0JxWFK-Lq2u7LZ0a-DbfpDTeO-bOjKVhVFv8NIh61um7ayR-zo-xYpvyFXwVYR5-c5I2_PT9vlKtm8vqyXj5vEcSnzxGehSFXGvGAoZebABia8hhQzG4RDqzSyoIsCOTjPFQYJDnjqLHcsV1rMyP14t419aYZfe3Qfrm0adL0BBUwpOUCLEXJdG2OHwey7srbd0QAzJ0lmlGTOkobC3VjYH4oa_R_-q0T8AALzYwA</recordid><startdate>20190208</startdate><enddate>20190208</enddate><creator>Shi, Yanmeng</creator><creator>Kahn, Joshua</creator><creator>Niu, Ben</creator><creator>Fei, Zaiyao</creator><creator>Sun, Bosong</creator><creator>Cai, Xinghan</creator><creator>Francisco, Brian A</creator><creator>Wu, Di</creator><creator>Shen, Zhi-Xun</creator><creator>Xu, Xiaodong</creator><creator>Cobden, David H</creator><creator>Cui, Yong-Tao</creator><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9558-1375</orcidid><orcidid>https://orcid.org/0000-0002-1454-0281</orcidid><orcidid>https://orcid.org/0000-0002-8015-1049</orcidid><orcidid>https://orcid.org/0000-0002-9274-2444</orcidid><orcidid>https://orcid.org/0000-0002-7254-2728</orcidid><orcidid>https://orcid.org/0000-0002-5648-0328</orcidid><orcidid>https://orcid.org/0000-0003-0621-298X</orcidid><orcidid>https://orcid.org/0000-0003-0348-2095</orcidid><orcidid>https://orcid.org/0000-0003-3619-1411</orcidid><orcidid>https://orcid.org/0000000256480328</orcidid><orcidid>https://orcid.org/0000000303482095</orcidid><orcidid>https://orcid.org/0000000214540281</orcidid><orcidid>https://orcid.org/0000000292742444</orcidid><orcidid>https://orcid.org/000000030621298X</orcidid><orcidid>https://orcid.org/0000000295581375</orcidid><orcidid>https://orcid.org/0000000336191411</orcidid><orcidid>https://orcid.org/0000000272542728</orcidid><orcidid>https://orcid.org/0000000280151049</orcidid></search><sort><creationdate>20190208</creationdate><title>Imaging quantum spin Hall edges in monolayer WTe 2</title><author>Shi, Yanmeng ; Kahn, Joshua ; Niu, Ben ; Fei, Zaiyao ; Sun, Bosong ; Cai, Xinghan ; Francisco, Brian A ; Wu, Di ; Shen, Zhi-Xun ; Xu, Xiaodong ; Cobden, David H ; Cui, Yong-Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2449-d8fb5680d30e448c1af03d715e8af3cea67e0f7bbe21cd26ef41c125ca2c09673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Science & Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yanmeng</creatorcontrib><creatorcontrib>Kahn, Joshua</creatorcontrib><creatorcontrib>Niu, Ben</creatorcontrib><creatorcontrib>Fei, Zaiyao</creatorcontrib><creatorcontrib>Sun, Bosong</creatorcontrib><creatorcontrib>Cai, Xinghan</creatorcontrib><creatorcontrib>Francisco, Brian A</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Shen, Zhi-Xun</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Cobden, David H</creatorcontrib><creatorcontrib>Cui, Yong-Tao</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yanmeng</au><au>Kahn, Joshua</au><au>Niu, Ben</au><au>Fei, Zaiyao</au><au>Sun, Bosong</au><au>Cai, Xinghan</au><au>Francisco, Brian A</au><au>Wu, Di</au><au>Shen, Zhi-Xun</au><au>Xu, Xiaodong</au><au>Cobden, David H</au><au>Cui, Yong-Tao</au><aucorp>Univ. of Washington, Seattle, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging quantum spin Hall edges in monolayer WTe 2</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2019-02-08</date><risdate>2019</risdate><volume>5</volume><issue>2</issue><spage>eaat8799</spage><pages>eaat8799-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>A two-dimensional (2D) topological insulator exhibits the quantum spin Hall (QSH) effect, in which topologically protected conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported in an atomically thin material, monolayer WTe
. Here, we directly image the local conductivity of monolayer WTe
using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, and is suppressed by magnetic field as expected. We observe additional conducting features which can be explained by edge states following boundaries between topologically trivial and nontrivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe
. Meanwhile, they reveal the robustness of the QSH channels and the potential to engineer them in the monolayer material platform.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>30783621</pmid><doi>10.1126/sciadv.aat8799</doi><orcidid>https://orcid.org/0000-0002-9558-1375</orcidid><orcidid>https://orcid.org/0000-0002-1454-0281</orcidid><orcidid>https://orcid.org/0000-0002-8015-1049</orcidid><orcidid>https://orcid.org/0000-0002-9274-2444</orcidid><orcidid>https://orcid.org/0000-0002-7254-2728</orcidid><orcidid>https://orcid.org/0000-0002-5648-0328</orcidid><orcidid>https://orcid.org/0000-0003-0621-298X</orcidid><orcidid>https://orcid.org/0000-0003-0348-2095</orcidid><orcidid>https://orcid.org/0000-0003-3619-1411</orcidid><orcidid>https://orcid.org/0000000256480328</orcidid><orcidid>https://orcid.org/0000000303482095</orcidid><orcidid>https://orcid.org/0000000214540281</orcidid><orcidid>https://orcid.org/0000000292742444</orcidid><orcidid>https://orcid.org/000000030621298X</orcidid><orcidid>https://orcid.org/0000000295581375</orcidid><orcidid>https://orcid.org/0000000336191411</orcidid><orcidid>https://orcid.org/0000000272542728</orcidid><orcidid>https://orcid.org/0000000280151049</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2019-02, Vol.5 (2), p.eaat8799 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_osti_scitechconnect_1610664 |
source | PubMed Central (Open Access); American Association for the Advancement of Science |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Science & Technology - Other Topics |
title | Imaging quantum spin Hall edges in monolayer WTe 2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20quantum%20spin%20Hall%20edges%20in%20monolayer%20WTe%202&rft.jtitle=Science%20advances&rft.au=Shi,%20Yanmeng&rft.aucorp=Univ.%20of%20Washington,%20Seattle,%20WA%20(United%20States)&rft.date=2019-02-08&rft.volume=5&rft.issue=2&rft.spage=eaat8799&rft.pages=eaat8799-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aat8799&rft_dat=%3Cpubmed_osti_%3E30783621%3C/pubmed_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2449-d8fb5680d30e448c1af03d715e8af3cea67e0f7bbe21cd26ef41c125ca2c09673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/30783621&rfr_iscdi=true |