Loading…

Imaging quantum spin Hall edges in monolayer WTe 2

A two-dimensional (2D) topological insulator exhibits the quantum spin Hall (QSH) effect, in which topologically protected conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported in an atomically thin material, monolayer WTe . Here, we dir...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2019-02, Vol.5 (2), p.eaat8799
Main Authors: Shi, Yanmeng, Kahn, Joshua, Niu, Ben, Fei, Zaiyao, Sun, Bosong, Cai, Xinghan, Francisco, Brian A, Wu, Di, Shen, Zhi-Xun, Xu, Xiaodong, Cobden, David H, Cui, Yong-Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2449-d8fb5680d30e448c1af03d715e8af3cea67e0f7bbe21cd26ef41c125ca2c09673
cites cdi_FETCH-LOGICAL-c2449-d8fb5680d30e448c1af03d715e8af3cea67e0f7bbe21cd26ef41c125ca2c09673
container_end_page
container_issue 2
container_start_page eaat8799
container_title Science advances
container_volume 5
creator Shi, Yanmeng
Kahn, Joshua
Niu, Ben
Fei, Zaiyao
Sun, Bosong
Cai, Xinghan
Francisco, Brian A
Wu, Di
Shen, Zhi-Xun
Xu, Xiaodong
Cobden, David H
Cui, Yong-Tao
description A two-dimensional (2D) topological insulator exhibits the quantum spin Hall (QSH) effect, in which topologically protected conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported in an atomically thin material, monolayer WTe . Here, we directly image the local conductivity of monolayer WTe using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, and is suppressed by magnetic field as expected. We observe additional conducting features which can be explained by edge states following boundaries between topologically trivial and nontrivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe . Meanwhile, they reveal the robustness of the QSH channels and the potential to engineer them in the monolayer material platform.
doi_str_mv 10.1126/sciadv.aat8799
format article
fullrecord <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1610664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30783621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2449-d8fb5680d30e448c1af03d715e8af3cea67e0f7bbe21cd26ef41c125ca2c09673</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMottRePUrwvjWTZJPdoxS1hYKXiseQTSZ1ZT_qZiv037tlq3iad-B5B-Yh5BbYAoCrh-hK678X1vaZzvMLMuVCpwlPZXb5L0_IPMZPxhhIpVLIr8lEMJ0JxWFK-Lq2u7LZ0a-DbfpDTeO-bOjKVhVFv8NIh61um7ayR-zo-xYpvyFXwVYR5-c5I2_PT9vlKtm8vqyXj5vEcSnzxGehSFXGvGAoZebABia8hhQzG4RDqzSyoIsCOTjPFQYJDnjqLHcsV1rMyP14t419aYZfe3Qfrm0adL0BBUwpOUCLEXJdG2OHwey7srbd0QAzJ0lmlGTOkobC3VjYH4oa_R_-q0T8AALzYwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Imaging quantum spin Hall edges in monolayer WTe 2</title><source>PubMed Central (Open Access)</source><source>American Association for the Advancement of Science</source><creator>Shi, Yanmeng ; Kahn, Joshua ; Niu, Ben ; Fei, Zaiyao ; Sun, Bosong ; Cai, Xinghan ; Francisco, Brian A ; Wu, Di ; Shen, Zhi-Xun ; Xu, Xiaodong ; Cobden, David H ; Cui, Yong-Tao</creator><creatorcontrib>Shi, Yanmeng ; Kahn, Joshua ; Niu, Ben ; Fei, Zaiyao ; Sun, Bosong ; Cai, Xinghan ; Francisco, Brian A ; Wu, Di ; Shen, Zhi-Xun ; Xu, Xiaodong ; Cobden, David H ; Cui, Yong-Tao ; Univ. of Washington, Seattle, WA (United States)</creatorcontrib><description>A two-dimensional (2D) topological insulator exhibits the quantum spin Hall (QSH) effect, in which topologically protected conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported in an atomically thin material, monolayer WTe . Here, we directly image the local conductivity of monolayer WTe using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, and is suppressed by magnetic field as expected. We observe additional conducting features which can be explained by edge states following boundaries between topologically trivial and nontrivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe . Meanwhile, they reveal the robustness of the QSH channels and the potential to engineer them in the monolayer material platform.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aat8799</identifier><identifier>PMID: 30783621</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Science &amp; Technology - Other Topics</subject><ispartof>Science advances, 2019-02, Vol.5 (2), p.eaat8799</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2449-d8fb5680d30e448c1af03d715e8af3cea67e0f7bbe21cd26ef41c125ca2c09673</citedby><cites>FETCH-LOGICAL-c2449-d8fb5680d30e448c1af03d715e8af3cea67e0f7bbe21cd26ef41c125ca2c09673</cites><orcidid>0000-0002-9558-1375 ; 0000-0002-1454-0281 ; 0000-0002-8015-1049 ; 0000-0002-9274-2444 ; 0000-0002-7254-2728 ; 0000-0002-5648-0328 ; 0000-0003-0621-298X ; 0000-0003-0348-2095 ; 0000-0003-3619-1411 ; 0000000256480328 ; 0000000303482095 ; 0000000214540281 ; 0000000292742444 ; 000000030621298X ; 0000000295581375 ; 0000000336191411 ; 0000000272542728 ; 0000000280151049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30783621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1610664$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Yanmeng</creatorcontrib><creatorcontrib>Kahn, Joshua</creatorcontrib><creatorcontrib>Niu, Ben</creatorcontrib><creatorcontrib>Fei, Zaiyao</creatorcontrib><creatorcontrib>Sun, Bosong</creatorcontrib><creatorcontrib>Cai, Xinghan</creatorcontrib><creatorcontrib>Francisco, Brian A</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Shen, Zhi-Xun</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Cobden, David H</creatorcontrib><creatorcontrib>Cui, Yong-Tao</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><title>Imaging quantum spin Hall edges in monolayer WTe 2</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>A two-dimensional (2D) topological insulator exhibits the quantum spin Hall (QSH) effect, in which topologically protected conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported in an atomically thin material, monolayer WTe . Here, we directly image the local conductivity of monolayer WTe using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, and is suppressed by magnetic field as expected. We observe additional conducting features which can be explained by edge states following boundaries between topologically trivial and nontrivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe . Meanwhile, they reveal the robustness of the QSH channels and the potential to engineer them in the monolayer material platform.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Science &amp; Technology - Other Topics</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMottRePUrwvjWTZJPdoxS1hYKXiseQTSZ1ZT_qZiv037tlq3iad-B5B-Yh5BbYAoCrh-hK678X1vaZzvMLMuVCpwlPZXb5L0_IPMZPxhhIpVLIr8lEMJ0JxWFK-Lq2u7LZ0a-DbfpDTeO-bOjKVhVFv8NIh61um7ayR-zo-xYpvyFXwVYR5-c5I2_PT9vlKtm8vqyXj5vEcSnzxGehSFXGvGAoZebABia8hhQzG4RDqzSyoIsCOTjPFQYJDnjqLHcsV1rMyP14t419aYZfe3Qfrm0adL0BBUwpOUCLEXJdG2OHwey7srbd0QAzJ0lmlGTOkobC3VjYH4oa_R_-q0T8AALzYwA</recordid><startdate>20190208</startdate><enddate>20190208</enddate><creator>Shi, Yanmeng</creator><creator>Kahn, Joshua</creator><creator>Niu, Ben</creator><creator>Fei, Zaiyao</creator><creator>Sun, Bosong</creator><creator>Cai, Xinghan</creator><creator>Francisco, Brian A</creator><creator>Wu, Di</creator><creator>Shen, Zhi-Xun</creator><creator>Xu, Xiaodong</creator><creator>Cobden, David H</creator><creator>Cui, Yong-Tao</creator><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9558-1375</orcidid><orcidid>https://orcid.org/0000-0002-1454-0281</orcidid><orcidid>https://orcid.org/0000-0002-8015-1049</orcidid><orcidid>https://orcid.org/0000-0002-9274-2444</orcidid><orcidid>https://orcid.org/0000-0002-7254-2728</orcidid><orcidid>https://orcid.org/0000-0002-5648-0328</orcidid><orcidid>https://orcid.org/0000-0003-0621-298X</orcidid><orcidid>https://orcid.org/0000-0003-0348-2095</orcidid><orcidid>https://orcid.org/0000-0003-3619-1411</orcidid><orcidid>https://orcid.org/0000000256480328</orcidid><orcidid>https://orcid.org/0000000303482095</orcidid><orcidid>https://orcid.org/0000000214540281</orcidid><orcidid>https://orcid.org/0000000292742444</orcidid><orcidid>https://orcid.org/000000030621298X</orcidid><orcidid>https://orcid.org/0000000295581375</orcidid><orcidid>https://orcid.org/0000000336191411</orcidid><orcidid>https://orcid.org/0000000272542728</orcidid><orcidid>https://orcid.org/0000000280151049</orcidid></search><sort><creationdate>20190208</creationdate><title>Imaging quantum spin Hall edges in monolayer WTe 2</title><author>Shi, Yanmeng ; Kahn, Joshua ; Niu, Ben ; Fei, Zaiyao ; Sun, Bosong ; Cai, Xinghan ; Francisco, Brian A ; Wu, Di ; Shen, Zhi-Xun ; Xu, Xiaodong ; Cobden, David H ; Cui, Yong-Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2449-d8fb5680d30e448c1af03d715e8af3cea67e0f7bbe21cd26ef41c125ca2c09673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yanmeng</creatorcontrib><creatorcontrib>Kahn, Joshua</creatorcontrib><creatorcontrib>Niu, Ben</creatorcontrib><creatorcontrib>Fei, Zaiyao</creatorcontrib><creatorcontrib>Sun, Bosong</creatorcontrib><creatorcontrib>Cai, Xinghan</creatorcontrib><creatorcontrib>Francisco, Brian A</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Shen, Zhi-Xun</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Cobden, David H</creatorcontrib><creatorcontrib>Cui, Yong-Tao</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yanmeng</au><au>Kahn, Joshua</au><au>Niu, Ben</au><au>Fei, Zaiyao</au><au>Sun, Bosong</au><au>Cai, Xinghan</au><au>Francisco, Brian A</au><au>Wu, Di</au><au>Shen, Zhi-Xun</au><au>Xu, Xiaodong</au><au>Cobden, David H</au><au>Cui, Yong-Tao</au><aucorp>Univ. of Washington, Seattle, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging quantum spin Hall edges in monolayer WTe 2</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2019-02-08</date><risdate>2019</risdate><volume>5</volume><issue>2</issue><spage>eaat8799</spage><pages>eaat8799-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>A two-dimensional (2D) topological insulator exhibits the quantum spin Hall (QSH) effect, in which topologically protected conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported in an atomically thin material, monolayer WTe . Here, we directly image the local conductivity of monolayer WTe using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, and is suppressed by magnetic field as expected. We observe additional conducting features which can be explained by edge states following boundaries between topologically trivial and nontrivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe . Meanwhile, they reveal the robustness of the QSH channels and the potential to engineer them in the monolayer material platform.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>30783621</pmid><doi>10.1126/sciadv.aat8799</doi><orcidid>https://orcid.org/0000-0002-9558-1375</orcidid><orcidid>https://orcid.org/0000-0002-1454-0281</orcidid><orcidid>https://orcid.org/0000-0002-8015-1049</orcidid><orcidid>https://orcid.org/0000-0002-9274-2444</orcidid><orcidid>https://orcid.org/0000-0002-7254-2728</orcidid><orcidid>https://orcid.org/0000-0002-5648-0328</orcidid><orcidid>https://orcid.org/0000-0003-0621-298X</orcidid><orcidid>https://orcid.org/0000-0003-0348-2095</orcidid><orcidid>https://orcid.org/0000-0003-3619-1411</orcidid><orcidid>https://orcid.org/0000000256480328</orcidid><orcidid>https://orcid.org/0000000303482095</orcidid><orcidid>https://orcid.org/0000000214540281</orcidid><orcidid>https://orcid.org/0000000292742444</orcidid><orcidid>https://orcid.org/000000030621298X</orcidid><orcidid>https://orcid.org/0000000295581375</orcidid><orcidid>https://orcid.org/0000000336191411</orcidid><orcidid>https://orcid.org/0000000272542728</orcidid><orcidid>https://orcid.org/0000000280151049</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2019-02, Vol.5 (2), p.eaat8799
issn 2375-2548
2375-2548
language eng
recordid cdi_osti_scitechconnect_1610664
source PubMed Central (Open Access); American Association for the Advancement of Science
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Science & Technology - Other Topics
title Imaging quantum spin Hall edges in monolayer WTe 2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20quantum%20spin%20Hall%20edges%20in%20monolayer%20WTe%202&rft.jtitle=Science%20advances&rft.au=Shi,%20Yanmeng&rft.aucorp=Univ.%20of%20Washington,%20Seattle,%20WA%20(United%20States)&rft.date=2019-02-08&rft.volume=5&rft.issue=2&rft.spage=eaat8799&rft.pages=eaat8799-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aat8799&rft_dat=%3Cpubmed_osti_%3E30783621%3C/pubmed_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2449-d8fb5680d30e448c1af03d715e8af3cea67e0f7bbe21cd26ef41c125ca2c09673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/30783621&rfr_iscdi=true