Loading…

The Catalytic Cycle of Water Oxidation in Crystallized Photosystem II Complexes: Performance and Requirements for Formation of Intermediates

Crystals of photosystem II (PSII) contain the most homogeneous copies of the water-oxidizing reaction center where O2 is evolved (WOC). However, few functional studies of PSII operation in crystals have been carried out, despite their widespread use in structural studies. Here we apply oximetric met...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2019-02, Vol.9 (2), p.1396-1407
Main Authors: Ananyev, Gennady, Roy-Chowdhury, Shatabdi, Gates, Colin, Fromme, Petra, Dismukes, G. Charles
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a373t-c2ccd2c2b4e826b5029df981ca3eb884dafd59b9b13bfa6c169ce6fb3a9c02bd3
cites cdi_FETCH-LOGICAL-a373t-c2ccd2c2b4e826b5029df981ca3eb884dafd59b9b13bfa6c169ce6fb3a9c02bd3
container_end_page 1407
container_issue 2
container_start_page 1396
container_title ACS catalysis
container_volume 9
creator Ananyev, Gennady
Roy-Chowdhury, Shatabdi
Gates, Colin
Fromme, Petra
Dismukes, G. Charles
description Crystals of photosystem II (PSII) contain the most homogeneous copies of the water-oxidizing reaction center where O2 is evolved (WOC). However, few functional studies of PSII operation in crystals have been carried out, despite their widespread use in structural studies. Here we apply oximetric methods to determine the quantum efficiency and lifetimes of intermediates of the WOC cycle as a function of added electron acceptors (quinones and ferricyanide), both aerobically and anaerobically. PSII crystals exhibit the highest quantum yield of O2 production yet observed of any native or isolated PSII (61.6%, theoretically 59 000 μmol O2/mg Chl/h). WOC cycling can be sustained for thousands of turnovers only using an electron acceptor (quinones, ferricyanide, etc.). Simulations of the catalytic cycle identify four distinct photochemical inefficiencies in both PSII crystals and dissolved PSII cores that are nearly the same magnitude. The exogenous acceptors equilibrate with the native plastoquinone acceptor at the QB (or QC) site(s), for which two distinct redox couples are observable that regulate flux through PSII. Flux through the catalytic cycle of water oxidation is shown to be kinetically restricted by the QAQB two-electron gate. The lifetimes of the S2 and S3 states are greatly extended (especially S2) by electron acceptors and depend on their redox reversibility. PSII performance can be pushed in vitro far beyond what it is capable of in vivo. With careful use of precautions and monitoring of populations, PSII microcrystals enable the exploration of WOC intermediates and the mechanism of catalysis.
doi_str_mv 10.1021/acscatal.8b04513
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1610832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b21374384</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-c2ccd2c2b4e826b5029df981ca3eb884dafd59b9b13bfa6c169ce6fb3a9c02bd3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQXUTBor17DJ5tzcfudtebLH4UhIpUPC7JZJam7CaaRGj9Df5oU6vgxbnMMO-9eczLsjNGp4xydikhgIyyn1aK5gUTB9mIs6KYFLkoDv_Mx9k4hDVNlRdlNaOj7HO5QtLstNtogDRb6JG4jrzIiJ4sNkbLaJwlxpLGb0Pi9eYDNXlcuehCWuBA5nPSuOG1xw2GK_KIvnN-kBaQSKvJE769G48D2hhIQsjtDv0-mnzmNvkMqE3yC6fZUSf7gOOffpI9394sm_vJw-Ju3lw_TKSYiTgBDqA5cJVjxUtVUF7rrq4YSIGqqnItO13UqlZMqE6WwMoasOyUkDVQrrQ4yc73d12Ipg1gIsIKnLUIsWUlo5XgiUT3JPAuBI9d--rNIP22ZbTdpd7-pt7-pJ4kF3tJQtq1e_c2ffE__QtX0onh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Catalytic Cycle of Water Oxidation in Crystallized Photosystem II Complexes: Performance and Requirements for Formation of Intermediates</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Ananyev, Gennady ; Roy-Chowdhury, Shatabdi ; Gates, Colin ; Fromme, Petra ; Dismukes, G. Charles</creator><creatorcontrib>Ananyev, Gennady ; Roy-Chowdhury, Shatabdi ; Gates, Colin ; Fromme, Petra ; Dismukes, G. Charles ; Rutgers Univ., Piscataway, NJ (United States)</creatorcontrib><description>Crystals of photosystem II (PSII) contain the most homogeneous copies of the water-oxidizing reaction center where O2 is evolved (WOC). However, few functional studies of PSII operation in crystals have been carried out, despite their widespread use in structural studies. Here we apply oximetric methods to determine the quantum efficiency and lifetimes of intermediates of the WOC cycle as a function of added electron acceptors (quinones and ferricyanide), both aerobically and anaerobically. PSII crystals exhibit the highest quantum yield of O2 production yet observed of any native or isolated PSII (61.6%, theoretically 59 000 μmol O2/mg Chl/h). WOC cycling can be sustained for thousands of turnovers only using an electron acceptor (quinones, ferricyanide, etc.). Simulations of the catalytic cycle identify four distinct photochemical inefficiencies in both PSII crystals and dissolved PSII cores that are nearly the same magnitude. The exogenous acceptors equilibrate with the native plastoquinone acceptor at the QB (or QC) site(s), for which two distinct redox couples are observable that regulate flux through PSII. Flux through the catalytic cycle of water oxidation is shown to be kinetically restricted by the QAQB two-electron gate. The lifetimes of the S2 and S3 states are greatly extended (especially S2) by electron acceptors and depend on their redox reversibility. PSII performance can be pushed in vitro far beyond what it is capable of in vivo. With careful use of precautions and monitoring of populations, PSII microcrystals enable the exploration of WOC intermediates and the mechanism of catalysis.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.8b04513</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry</subject><ispartof>ACS catalysis, 2019-02, Vol.9 (2), p.1396-1407</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-c2ccd2c2b4e826b5029df981ca3eb884dafd59b9b13bfa6c169ce6fb3a9c02bd3</citedby><cites>FETCH-LOGICAL-a373t-c2ccd2c2b4e826b5029df981ca3eb884dafd59b9b13bfa6c169ce6fb3a9c02bd3</cites><orcidid>0000-0003-0155-0541 ; 0000000301550541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1610832$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ananyev, Gennady</creatorcontrib><creatorcontrib>Roy-Chowdhury, Shatabdi</creatorcontrib><creatorcontrib>Gates, Colin</creatorcontrib><creatorcontrib>Fromme, Petra</creatorcontrib><creatorcontrib>Dismukes, G. Charles</creatorcontrib><creatorcontrib>Rutgers Univ., Piscataway, NJ (United States)</creatorcontrib><title>The Catalytic Cycle of Water Oxidation in Crystallized Photosystem II Complexes: Performance and Requirements for Formation of Intermediates</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Crystals of photosystem II (PSII) contain the most homogeneous copies of the water-oxidizing reaction center where O2 is evolved (WOC). However, few functional studies of PSII operation in crystals have been carried out, despite their widespread use in structural studies. Here we apply oximetric methods to determine the quantum efficiency and lifetimes of intermediates of the WOC cycle as a function of added electron acceptors (quinones and ferricyanide), both aerobically and anaerobically. PSII crystals exhibit the highest quantum yield of O2 production yet observed of any native or isolated PSII (61.6%, theoretically 59 000 μmol O2/mg Chl/h). WOC cycling can be sustained for thousands of turnovers only using an electron acceptor (quinones, ferricyanide, etc.). Simulations of the catalytic cycle identify four distinct photochemical inefficiencies in both PSII crystals and dissolved PSII cores that are nearly the same magnitude. The exogenous acceptors equilibrate with the native plastoquinone acceptor at the QB (or QC) site(s), for which two distinct redox couples are observable that regulate flux through PSII. Flux through the catalytic cycle of water oxidation is shown to be kinetically restricted by the QAQB two-electron gate. The lifetimes of the S2 and S3 states are greatly extended (especially S2) by electron acceptors and depend on their redox reversibility. PSII performance can be pushed in vitro far beyond what it is capable of in vivo. With careful use of precautions and monitoring of populations, PSII microcrystals enable the exploration of WOC intermediates and the mechanism of catalysis.</description><subject>Chemistry</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQXUTBor17DJ5tzcfudtebLH4UhIpUPC7JZJam7CaaRGj9Df5oU6vgxbnMMO-9eczLsjNGp4xydikhgIyyn1aK5gUTB9mIs6KYFLkoDv_Mx9k4hDVNlRdlNaOj7HO5QtLstNtogDRb6JG4jrzIiJ4sNkbLaJwlxpLGb0Pi9eYDNXlcuehCWuBA5nPSuOG1xw2GK_KIvnN-kBaQSKvJE769G48D2hhIQsjtDv0-mnzmNvkMqE3yC6fZUSf7gOOffpI9394sm_vJw-Ju3lw_TKSYiTgBDqA5cJVjxUtVUF7rrq4YSIGqqnItO13UqlZMqE6WwMoasOyUkDVQrrQ4yc73d12Ipg1gIsIKnLUIsWUlo5XgiUT3JPAuBI9d--rNIP22ZbTdpd7-pt7-pJ4kF3tJQtq1e_c2ffE__QtX0onh</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Ananyev, Gennady</creator><creator>Roy-Chowdhury, Shatabdi</creator><creator>Gates, Colin</creator><creator>Fromme, Petra</creator><creator>Dismukes, G. Charles</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0155-0541</orcidid><orcidid>https://orcid.org/0000000301550541</orcidid></search><sort><creationdate>20190201</creationdate><title>The Catalytic Cycle of Water Oxidation in Crystallized Photosystem II Complexes: Performance and Requirements for Formation of Intermediates</title><author>Ananyev, Gennady ; Roy-Chowdhury, Shatabdi ; Gates, Colin ; Fromme, Petra ; Dismukes, G. Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-c2ccd2c2b4e826b5029df981ca3eb884dafd59b9b13bfa6c169ce6fb3a9c02bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ananyev, Gennady</creatorcontrib><creatorcontrib>Roy-Chowdhury, Shatabdi</creatorcontrib><creatorcontrib>Gates, Colin</creatorcontrib><creatorcontrib>Fromme, Petra</creatorcontrib><creatorcontrib>Dismukes, G. Charles</creatorcontrib><creatorcontrib>Rutgers Univ., Piscataway, NJ (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ananyev, Gennady</au><au>Roy-Chowdhury, Shatabdi</au><au>Gates, Colin</au><au>Fromme, Petra</au><au>Dismukes, G. Charles</au><aucorp>Rutgers Univ., Piscataway, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Catalytic Cycle of Water Oxidation in Crystallized Photosystem II Complexes: Performance and Requirements for Formation of Intermediates</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>9</volume><issue>2</issue><spage>1396</spage><epage>1407</epage><pages>1396-1407</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Crystals of photosystem II (PSII) contain the most homogeneous copies of the water-oxidizing reaction center where O2 is evolved (WOC). However, few functional studies of PSII operation in crystals have been carried out, despite their widespread use in structural studies. Here we apply oximetric methods to determine the quantum efficiency and lifetimes of intermediates of the WOC cycle as a function of added electron acceptors (quinones and ferricyanide), both aerobically and anaerobically. PSII crystals exhibit the highest quantum yield of O2 production yet observed of any native or isolated PSII (61.6%, theoretically 59 000 μmol O2/mg Chl/h). WOC cycling can be sustained for thousands of turnovers only using an electron acceptor (quinones, ferricyanide, etc.). Simulations of the catalytic cycle identify four distinct photochemical inefficiencies in both PSII crystals and dissolved PSII cores that are nearly the same magnitude. The exogenous acceptors equilibrate with the native plastoquinone acceptor at the QB (or QC) site(s), for which two distinct redox couples are observable that regulate flux through PSII. Flux through the catalytic cycle of water oxidation is shown to be kinetically restricted by the QAQB two-electron gate. The lifetimes of the S2 and S3 states are greatly extended (especially S2) by electron acceptors and depend on their redox reversibility. PSII performance can be pushed in vitro far beyond what it is capable of in vivo. With careful use of precautions and monitoring of populations, PSII microcrystals enable the exploration of WOC intermediates and the mechanism of catalysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acscatal.8b04513</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0155-0541</orcidid><orcidid>https://orcid.org/0000000301550541</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2019-02, Vol.9 (2), p.1396-1407
issn 2155-5435
2155-5435
language eng
recordid cdi_osti_scitechconnect_1610832
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemistry
title The Catalytic Cycle of Water Oxidation in Crystallized Photosystem II Complexes: Performance and Requirements for Formation of Intermediates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Catalytic%20Cycle%20of%20Water%20Oxidation%20in%20Crystallized%20Photosystem%20II%20Complexes:%20Performance%20and%20Requirements%20for%20Formation%20of%20Intermediates&rft.jtitle=ACS%20catalysis&rft.au=Ananyev,%20Gennady&rft.aucorp=Rutgers%20Univ.,%20Piscataway,%20NJ%20(United%20States)&rft.date=2019-02-01&rft.volume=9&rft.issue=2&rft.spage=1396&rft.epage=1407&rft.pages=1396-1407&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.8b04513&rft_dat=%3Cacs_osti_%3Eb21374384%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a373t-c2ccd2c2b4e826b5029df981ca3eb884dafd59b9b13bfa6c169ce6fb3a9c02bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true