Loading…

Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical

Hydroperoxyalkylperoxy species are important intermediates that are generated during the autoignition of transport fuels. In combustion, the fate of hydroperoxyalkylperoxy is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the hydroperoxyalkyl...

Full description

Saved in:
Bibliographic Details
Published in:Combustion and flame 2018-11, Vol.197, p.88-101
Main Authors: Xing, Lili, Bao, Junwei Lucas, Wang, Zhandong, Wang, Xuetao, Truhlar, Donald G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-b1db1cbb83820cf9acab4ebac987e97f61c5852bdfb6e2a0abc83db930a6d2803
cites cdi_FETCH-LOGICAL-c468t-b1db1cbb83820cf9acab4ebac987e97f61c5852bdfb6e2a0abc83db930a6d2803
container_end_page 101
container_issue
container_start_page 88
container_title Combustion and flame
container_volume 197
creator Xing, Lili
Bao, Junwei Lucas
Wang, Zhandong
Wang, Xuetao
Truhlar, Donald G.
description Hydroperoxyalkylperoxy species are important intermediates that are generated during the autoignition of transport fuels. In combustion, the fate of hydroperoxyalkylperoxy is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the hydroperoxyalkylperoxy is a 1,5 H-shift, for which kinetics data are experimentally unavailable. In the present work, we study 1-hydroperoxypentan-3-yl)dioxidanyl (CH3CH2CH(OO)CH2CH2OOH) as a model compound to clarify the kinetics of 1,5 H-shift of hydroperoxyalkylperoxy species, in particular α-H isomerization and alternative competitive pathways. With a combination of electronic structure calculations, we determine previously missing thermochemical data, and with multipath variational transition state theory (MP-VTST), a multidimensional tunneling (MT) approximation, multiple-structure anharmonicity, and torsional potential anharmonicity, we obtained much more accurate rate constants than the ones that can computed by conventional single-structure harmonic transition state theory (TST) and than the empirically estimated rate constants that are currently used in combustion modeling. The roles of various factors in determining the rates are elucidated. The pressure-dependent rate constants for these competitive reactions are computed using system-specific quantum RRK theory. The calculated temperature range is 298–1500 K, and the pressure range is 0.01–100 atm. The accurate thermodynamic and kinetics data determined in this work are indispensable in the detailed understanding and prediction of ignition properties of hydrocarbons and alternative fuels.
doi_str_mv 10.1016/j.combustflame.2018.07.013
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1612356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218018303377</els_id><sourcerecordid>2129522950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-b1db1cbb83820cf9acab4ebac987e97f61c5852bdfb6e2a0abc83db930a6d2803</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEEkPhHayyTrh2JonDDpWfQaoUgWBt-eeG8TSxB9uDOrxL37VOMwuWLCzb8rmfz9EpimsKFQXavjtU2s_qFNM4yRkrBpRX0FVA62fFhjZNW7Ke0efFBoBCySiHl8WrGA8A0G3relM87M4m-F_oSNzbMREb_YzB_pXJeheJdSTtkdxZh8nqSPz4dI-ovTPE31vzJCQz6r10Ns6LQk530iG5OMvPFfmOUq_EC2G_fHvE4O_PR3TpPK1nMgzfhmFHgjRWy-l18WKUU8Q3l_2q-Pn504-bXXk7fPl68-G21NuWp1JRo6hWitecgR57qaXaopK65x323dhS3fCGKTOqFpkEqTSvjeprkK1hHOqr4nrl-uxXRG1TzpMjOtRJ0Jayummz6O0qOgb_-4QxiYM_BZd9CUZZ37C8FtT7VaWDjzHgKI7BzjKcBQWxdCYO4t_OxNKZgE7kzvLwx3UYc9g_FsPiBZ1GY8NixXj7P5hH0P6sBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129522950</pqid></control><display><type>article</type><title>Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Xing, Lili ; Bao, Junwei Lucas ; Wang, Zhandong ; Wang, Xuetao ; Truhlar, Donald G.</creator><creatorcontrib>Xing, Lili ; Bao, Junwei Lucas ; Wang, Zhandong ; Wang, Xuetao ; Truhlar, Donald G. ; Univ. of New Mexico, Albuquerque, NM (United States)</creatorcontrib><description>Hydroperoxyalkylperoxy species are important intermediates that are generated during the autoignition of transport fuels. In combustion, the fate of hydroperoxyalkylperoxy is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the hydroperoxyalkylperoxy is a 1,5 H-shift, for which kinetics data are experimentally unavailable. In the present work, we study 1-hydroperoxypentan-3-yl)dioxidanyl (CH3CH2CH(OO)CH2CH2OOH) as a model compound to clarify the kinetics of 1,5 H-shift of hydroperoxyalkylperoxy species, in particular α-H isomerization and alternative competitive pathways. With a combination of electronic structure calculations, we determine previously missing thermochemical data, and with multipath variational transition state theory (MP-VTST), a multidimensional tunneling (MT) approximation, multiple-structure anharmonicity, and torsional potential anharmonicity, we obtained much more accurate rate constants than the ones that can computed by conventional single-structure harmonic transition state theory (TST) and than the empirically estimated rate constants that are currently used in combustion modeling. The roles of various factors in determining the rates are elucidated. The pressure-dependent rate constants for these competitive reactions are computed using system-specific quantum RRK theory. The calculated temperature range is 298–1500 K, and the pressure range is 0.01–100 atm. The accurate thermodynamic and kinetics data determined in this work are indispensable in the detailed understanding and prediction of ignition properties of hydrocarbons and alternative fuels.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2018.07.013</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Alkanes ; Alternative fuels ; Anharmonicity ; Autoignition ; Combustion ; Computation ; Electronic structure ; Flame retardants ; Fluidized bed combustion ; Hydrogen ; Hydroperoxyalkylperoxy ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Isomerization ; Kinetics ; Mathematical analysis ; Mathematical models ; Oxidation ; Pressure dependence ; Quantum chemical calculation ; Rate constants ; Reaction kinetics ; Spontaneous combustion</subject><ispartof>Combustion and flame, 2018-11, Vol.197, p.88-101</ispartof><rights>2018 The Combustion Institute</rights><rights>Copyright Elsevier BV Nov 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-b1db1cbb83820cf9acab4ebac987e97f61c5852bdfb6e2a0abc83db930a6d2803</citedby><cites>FETCH-LOGICAL-c468t-b1db1cbb83820cf9acab4ebac987e97f61c5852bdfb6e2a0abc83db930a6d2803</cites><orcidid>0000-0003-2099-8472 ; 0000-0002-7742-7294 ; 0000-0003-1535-2319 ; 0000000277427294 ; 0000000320998472 ; 0000000315352319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1612356$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Lili</creatorcontrib><creatorcontrib>Bao, Junwei Lucas</creatorcontrib><creatorcontrib>Wang, Zhandong</creatorcontrib><creatorcontrib>Wang, Xuetao</creatorcontrib><creatorcontrib>Truhlar, Donald G.</creatorcontrib><creatorcontrib>Univ. of New Mexico, Albuquerque, NM (United States)</creatorcontrib><title>Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical</title><title>Combustion and flame</title><description>Hydroperoxyalkylperoxy species are important intermediates that are generated during the autoignition of transport fuels. In combustion, the fate of hydroperoxyalkylperoxy is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the hydroperoxyalkylperoxy is a 1,5 H-shift, for which kinetics data are experimentally unavailable. In the present work, we study 1-hydroperoxypentan-3-yl)dioxidanyl (CH3CH2CH(OO)CH2CH2OOH) as a model compound to clarify the kinetics of 1,5 H-shift of hydroperoxyalkylperoxy species, in particular α-H isomerization and alternative competitive pathways. With a combination of electronic structure calculations, we determine previously missing thermochemical data, and with multipath variational transition state theory (MP-VTST), a multidimensional tunneling (MT) approximation, multiple-structure anharmonicity, and torsional potential anharmonicity, we obtained much more accurate rate constants than the ones that can computed by conventional single-structure harmonic transition state theory (TST) and than the empirically estimated rate constants that are currently used in combustion modeling. The roles of various factors in determining the rates are elucidated. The pressure-dependent rate constants for these competitive reactions are computed using system-specific quantum RRK theory. The calculated temperature range is 298–1500 K, and the pressure range is 0.01–100 atm. The accurate thermodynamic and kinetics data determined in this work are indispensable in the detailed understanding and prediction of ignition properties of hydrocarbons and alternative fuels.</description><subject>Alkanes</subject><subject>Alternative fuels</subject><subject>Anharmonicity</subject><subject>Autoignition</subject><subject>Combustion</subject><subject>Computation</subject><subject>Electronic structure</subject><subject>Flame retardants</subject><subject>Fluidized bed combustion</subject><subject>Hydrogen</subject><subject>Hydroperoxyalkylperoxy</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Isomerization</subject><subject>Kinetics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Oxidation</subject><subject>Pressure dependence</subject><subject>Quantum chemical calculation</subject><subject>Rate constants</subject><subject>Reaction kinetics</subject><subject>Spontaneous combustion</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAUhSMEEkPhHayyTrh2JonDDpWfQaoUgWBt-eeG8TSxB9uDOrxL37VOMwuWLCzb8rmfz9EpimsKFQXavjtU2s_qFNM4yRkrBpRX0FVA62fFhjZNW7Ke0efFBoBCySiHl8WrGA8A0G3relM87M4m-F_oSNzbMREb_YzB_pXJeheJdSTtkdxZh8nqSPz4dI-ovTPE31vzJCQz6r10Ns6LQk530iG5OMvPFfmOUq_EC2G_fHvE4O_PR3TpPK1nMgzfhmFHgjRWy-l18WKUU8Q3l_2q-Pn504-bXXk7fPl68-G21NuWp1JRo6hWitecgR57qaXaopK65x323dhS3fCGKTOqFpkEqTSvjeprkK1hHOqr4nrl-uxXRG1TzpMjOtRJ0Jayummz6O0qOgb_-4QxiYM_BZd9CUZZ37C8FtT7VaWDjzHgKI7BzjKcBQWxdCYO4t_OxNKZgE7kzvLwx3UYc9g_FsPiBZ1GY8NixXj7P5hH0P6sBQ</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Xing, Lili</creator><creator>Bao, Junwei Lucas</creator><creator>Wang, Zhandong</creator><creator>Wang, Xuetao</creator><creator>Truhlar, Donald G.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2099-8472</orcidid><orcidid>https://orcid.org/0000-0002-7742-7294</orcidid><orcidid>https://orcid.org/0000-0003-1535-2319</orcidid><orcidid>https://orcid.org/0000000277427294</orcidid><orcidid>https://orcid.org/0000000320998472</orcidid><orcidid>https://orcid.org/0000000315352319</orcidid></search><sort><creationdate>20181101</creationdate><title>Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical</title><author>Xing, Lili ; Bao, Junwei Lucas ; Wang, Zhandong ; Wang, Xuetao ; Truhlar, Donald G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-b1db1cbb83820cf9acab4ebac987e97f61c5852bdfb6e2a0abc83db930a6d2803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alkanes</topic><topic>Alternative fuels</topic><topic>Anharmonicity</topic><topic>Autoignition</topic><topic>Combustion</topic><topic>Computation</topic><topic>Electronic structure</topic><topic>Flame retardants</topic><topic>Fluidized bed combustion</topic><topic>Hydrogen</topic><topic>Hydroperoxyalkylperoxy</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Isomerization</topic><topic>Kinetics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Oxidation</topic><topic>Pressure dependence</topic><topic>Quantum chemical calculation</topic><topic>Rate constants</topic><topic>Reaction kinetics</topic><topic>Spontaneous combustion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Lili</creatorcontrib><creatorcontrib>Bao, Junwei Lucas</creatorcontrib><creatorcontrib>Wang, Zhandong</creatorcontrib><creatorcontrib>Wang, Xuetao</creatorcontrib><creatorcontrib>Truhlar, Donald G.</creatorcontrib><creatorcontrib>Univ. of New Mexico, Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Lili</au><au>Bao, Junwei Lucas</au><au>Wang, Zhandong</au><au>Wang, Xuetao</au><au>Truhlar, Donald G.</au><aucorp>Univ. of New Mexico, Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical</atitle><jtitle>Combustion and flame</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>197</volume><spage>88</spage><epage>101</epage><pages>88-101</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Hydroperoxyalkylperoxy species are important intermediates that are generated during the autoignition of transport fuels. In combustion, the fate of hydroperoxyalkylperoxy is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the hydroperoxyalkylperoxy is a 1,5 H-shift, for which kinetics data are experimentally unavailable. In the present work, we study 1-hydroperoxypentan-3-yl)dioxidanyl (CH3CH2CH(OO)CH2CH2OOH) as a model compound to clarify the kinetics of 1,5 H-shift of hydroperoxyalkylperoxy species, in particular α-H isomerization and alternative competitive pathways. With a combination of electronic structure calculations, we determine previously missing thermochemical data, and with multipath variational transition state theory (MP-VTST), a multidimensional tunneling (MT) approximation, multiple-structure anharmonicity, and torsional potential anharmonicity, we obtained much more accurate rate constants than the ones that can computed by conventional single-structure harmonic transition state theory (TST) and than the empirically estimated rate constants that are currently used in combustion modeling. The roles of various factors in determining the rates are elucidated. The pressure-dependent rate constants for these competitive reactions are computed using system-specific quantum RRK theory. The calculated temperature range is 298–1500 K, and the pressure range is 0.01–100 atm. The accurate thermodynamic and kinetics data determined in this work are indispensable in the detailed understanding and prediction of ignition properties of hydrocarbons and alternative fuels.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2018.07.013</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2099-8472</orcidid><orcidid>https://orcid.org/0000-0002-7742-7294</orcidid><orcidid>https://orcid.org/0000-0003-1535-2319</orcidid><orcidid>https://orcid.org/0000000277427294</orcidid><orcidid>https://orcid.org/0000000320998472</orcidid><orcidid>https://orcid.org/0000000315352319</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2018-11, Vol.197, p.88-101
issn 0010-2180
1556-2921
language eng
recordid cdi_osti_scitechconnect_1612356
source ScienceDirect Freedom Collection 2022-2024
subjects Alkanes
Alternative fuels
Anharmonicity
Autoignition
Combustion
Computation
Electronic structure
Flame retardants
Fluidized bed combustion
Hydrogen
Hydroperoxyalkylperoxy
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Isomerization
Kinetics
Mathematical analysis
Mathematical models
Oxidation
Pressure dependence
Quantum chemical calculation
Rate constants
Reaction kinetics
Spontaneous combustion
title Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20shift%20isomerizations%20in%20the%20kinetics%20of%20the%20second%20oxidation%20mechanism%20of%20alkane%20combustion.%20Reactions%20of%20the%20hydroperoxypentylperoxy%20OOQOOH%20radical&rft.jtitle=Combustion%20and%20flame&rft.au=Xing,%20Lili&rft.aucorp=Univ.%20of%20New%20Mexico,%20Albuquerque,%20NM%20(United%20States)&rft.date=2018-11-01&rft.volume=197&rft.spage=88&rft.epage=101&rft.pages=88-101&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2018.07.013&rft_dat=%3Cproquest_osti_%3E2129522950%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-b1db1cbb83820cf9acab4ebac987e97f61c5852bdfb6e2a0abc83db930a6d2803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2129522950&rft_id=info:pmid/&rfr_iscdi=true