Loading…
Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical
Hydroperoxyalkylperoxy species are important intermediates that are generated during the autoignition of transport fuels. In combustion, the fate of hydroperoxyalkylperoxy is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the hydroperoxyalkyl...
Saved in:
Published in: | Combustion and flame 2018-11, Vol.197, p.88-101 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c468t-b1db1cbb83820cf9acab4ebac987e97f61c5852bdfb6e2a0abc83db930a6d2803 |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-b1db1cbb83820cf9acab4ebac987e97f61c5852bdfb6e2a0abc83db930a6d2803 |
container_end_page | 101 |
container_issue | |
container_start_page | 88 |
container_title | Combustion and flame |
container_volume | 197 |
creator | Xing, Lili Bao, Junwei Lucas Wang, Zhandong Wang, Xuetao Truhlar, Donald G. |
description | Hydroperoxyalkylperoxy species are important intermediates that are generated during the autoignition of transport fuels. In combustion, the fate of hydroperoxyalkylperoxy is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the hydroperoxyalkylperoxy is a 1,5 H-shift, for which kinetics data are experimentally unavailable. In the present work, we study 1-hydroperoxypentan-3-yl)dioxidanyl (CH3CH2CH(OO)CH2CH2OOH) as a model compound to clarify the kinetics of 1,5 H-shift of hydroperoxyalkylperoxy species, in particular α-H isomerization and alternative competitive pathways. With a combination of electronic structure calculations, we determine previously missing thermochemical data, and with multipath variational transition state theory (MP-VTST), a multidimensional tunneling (MT) approximation, multiple-structure anharmonicity, and torsional potential anharmonicity, we obtained much more accurate rate constants than the ones that can computed by conventional single-structure harmonic transition state theory (TST) and than the empirically estimated rate constants that are currently used in combustion modeling. The roles of various factors in determining the rates are elucidated. The pressure-dependent rate constants for these competitive reactions are computed using system-specific quantum RRK theory. The calculated temperature range is 298–1500 K, and the pressure range is 0.01–100 atm. The accurate thermodynamic and kinetics data determined in this work are indispensable in the detailed understanding and prediction of ignition properties of hydrocarbons and alternative fuels. |
doi_str_mv | 10.1016/j.combustflame.2018.07.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1612356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218018303377</els_id><sourcerecordid>2129522950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-b1db1cbb83820cf9acab4ebac987e97f61c5852bdfb6e2a0abc83db930a6d2803</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEEkPhHayyTrh2JonDDpWfQaoUgWBt-eeG8TSxB9uDOrxL37VOMwuWLCzb8rmfz9EpimsKFQXavjtU2s_qFNM4yRkrBpRX0FVA62fFhjZNW7Ke0efFBoBCySiHl8WrGA8A0G3relM87M4m-F_oSNzbMREb_YzB_pXJeheJdSTtkdxZh8nqSPz4dI-ovTPE31vzJCQz6r10Ns6LQk530iG5OMvPFfmOUq_EC2G_fHvE4O_PR3TpPK1nMgzfhmFHgjRWy-l18WKUU8Q3l_2q-Pn504-bXXk7fPl68-G21NuWp1JRo6hWitecgR57qaXaopK65x323dhS3fCGKTOqFpkEqTSvjeprkK1hHOqr4nrl-uxXRG1TzpMjOtRJ0Jayummz6O0qOgb_-4QxiYM_BZd9CUZZ37C8FtT7VaWDjzHgKI7BzjKcBQWxdCYO4t_OxNKZgE7kzvLwx3UYc9g_FsPiBZ1GY8NixXj7P5hH0P6sBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129522950</pqid></control><display><type>article</type><title>Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Xing, Lili ; Bao, Junwei Lucas ; Wang, Zhandong ; Wang, Xuetao ; Truhlar, Donald G.</creator><creatorcontrib>Xing, Lili ; Bao, Junwei Lucas ; Wang, Zhandong ; Wang, Xuetao ; Truhlar, Donald G. ; Univ. of New Mexico, Albuquerque, NM (United States)</creatorcontrib><description>Hydroperoxyalkylperoxy species are important intermediates that are generated during the autoignition of transport fuels. In combustion, the fate of hydroperoxyalkylperoxy is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the hydroperoxyalkylperoxy is a 1,5 H-shift, for which kinetics data are experimentally unavailable. In the present work, we study 1-hydroperoxypentan-3-yl)dioxidanyl (CH3CH2CH(OO)CH2CH2OOH) as a model compound to clarify the kinetics of 1,5 H-shift of hydroperoxyalkylperoxy species, in particular α-H isomerization and alternative competitive pathways. With a combination of electronic structure calculations, we determine previously missing thermochemical data, and with multipath variational transition state theory (MP-VTST), a multidimensional tunneling (MT) approximation, multiple-structure anharmonicity, and torsional potential anharmonicity, we obtained much more accurate rate constants than the ones that can computed by conventional single-structure harmonic transition state theory (TST) and than the empirically estimated rate constants that are currently used in combustion modeling. The roles of various factors in determining the rates are elucidated. The pressure-dependent rate constants for these competitive reactions are computed using system-specific quantum RRK theory. The calculated temperature range is 298–1500 K, and the pressure range is 0.01–100 atm. The accurate thermodynamic and kinetics data determined in this work are indispensable in the detailed understanding and prediction of ignition properties of hydrocarbons and alternative fuels.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2018.07.013</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Alkanes ; Alternative fuels ; Anharmonicity ; Autoignition ; Combustion ; Computation ; Electronic structure ; Flame retardants ; Fluidized bed combustion ; Hydrogen ; Hydroperoxyalkylperoxy ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Isomerization ; Kinetics ; Mathematical analysis ; Mathematical models ; Oxidation ; Pressure dependence ; Quantum chemical calculation ; Rate constants ; Reaction kinetics ; Spontaneous combustion</subject><ispartof>Combustion and flame, 2018-11, Vol.197, p.88-101</ispartof><rights>2018 The Combustion Institute</rights><rights>Copyright Elsevier BV Nov 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-b1db1cbb83820cf9acab4ebac987e97f61c5852bdfb6e2a0abc83db930a6d2803</citedby><cites>FETCH-LOGICAL-c468t-b1db1cbb83820cf9acab4ebac987e97f61c5852bdfb6e2a0abc83db930a6d2803</cites><orcidid>0000-0003-2099-8472 ; 0000-0002-7742-7294 ; 0000-0003-1535-2319 ; 0000000277427294 ; 0000000320998472 ; 0000000315352319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1612356$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Lili</creatorcontrib><creatorcontrib>Bao, Junwei Lucas</creatorcontrib><creatorcontrib>Wang, Zhandong</creatorcontrib><creatorcontrib>Wang, Xuetao</creatorcontrib><creatorcontrib>Truhlar, Donald G.</creatorcontrib><creatorcontrib>Univ. of New Mexico, Albuquerque, NM (United States)</creatorcontrib><title>Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical</title><title>Combustion and flame</title><description>Hydroperoxyalkylperoxy species are important intermediates that are generated during the autoignition of transport fuels. In combustion, the fate of hydroperoxyalkylperoxy is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the hydroperoxyalkylperoxy is a 1,5 H-shift, for which kinetics data are experimentally unavailable. In the present work, we study 1-hydroperoxypentan-3-yl)dioxidanyl (CH3CH2CH(OO)CH2CH2OOH) as a model compound to clarify the kinetics of 1,5 H-shift of hydroperoxyalkylperoxy species, in particular α-H isomerization and alternative competitive pathways. With a combination of electronic structure calculations, we determine previously missing thermochemical data, and with multipath variational transition state theory (MP-VTST), a multidimensional tunneling (MT) approximation, multiple-structure anharmonicity, and torsional potential anharmonicity, we obtained much more accurate rate constants than the ones that can computed by conventional single-structure harmonic transition state theory (TST) and than the empirically estimated rate constants that are currently used in combustion modeling. The roles of various factors in determining the rates are elucidated. The pressure-dependent rate constants for these competitive reactions are computed using system-specific quantum RRK theory. The calculated temperature range is 298–1500 K, and the pressure range is 0.01–100 atm. The accurate thermodynamic and kinetics data determined in this work are indispensable in the detailed understanding and prediction of ignition properties of hydrocarbons and alternative fuels.</description><subject>Alkanes</subject><subject>Alternative fuels</subject><subject>Anharmonicity</subject><subject>Autoignition</subject><subject>Combustion</subject><subject>Computation</subject><subject>Electronic structure</subject><subject>Flame retardants</subject><subject>Fluidized bed combustion</subject><subject>Hydrogen</subject><subject>Hydroperoxyalkylperoxy</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Isomerization</subject><subject>Kinetics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Oxidation</subject><subject>Pressure dependence</subject><subject>Quantum chemical calculation</subject><subject>Rate constants</subject><subject>Reaction kinetics</subject><subject>Spontaneous combustion</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAUhSMEEkPhHayyTrh2JonDDpWfQaoUgWBt-eeG8TSxB9uDOrxL37VOMwuWLCzb8rmfz9EpimsKFQXavjtU2s_qFNM4yRkrBpRX0FVA62fFhjZNW7Ke0efFBoBCySiHl8WrGA8A0G3relM87M4m-F_oSNzbMREb_YzB_pXJeheJdSTtkdxZh8nqSPz4dI-ovTPE31vzJCQz6r10Ns6LQk530iG5OMvPFfmOUq_EC2G_fHvE4O_PR3TpPK1nMgzfhmFHgjRWy-l18WKUU8Q3l_2q-Pn504-bXXk7fPl68-G21NuWp1JRo6hWitecgR57qaXaopK65x323dhS3fCGKTOqFpkEqTSvjeprkK1hHOqr4nrl-uxXRG1TzpMjOtRJ0Jayummz6O0qOgb_-4QxiYM_BZd9CUZZ37C8FtT7VaWDjzHgKI7BzjKcBQWxdCYO4t_OxNKZgE7kzvLwx3UYc9g_FsPiBZ1GY8NixXj7P5hH0P6sBQ</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Xing, Lili</creator><creator>Bao, Junwei Lucas</creator><creator>Wang, Zhandong</creator><creator>Wang, Xuetao</creator><creator>Truhlar, Donald G.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2099-8472</orcidid><orcidid>https://orcid.org/0000-0002-7742-7294</orcidid><orcidid>https://orcid.org/0000-0003-1535-2319</orcidid><orcidid>https://orcid.org/0000000277427294</orcidid><orcidid>https://orcid.org/0000000320998472</orcidid><orcidid>https://orcid.org/0000000315352319</orcidid></search><sort><creationdate>20181101</creationdate><title>Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical</title><author>Xing, Lili ; Bao, Junwei Lucas ; Wang, Zhandong ; Wang, Xuetao ; Truhlar, Donald G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-b1db1cbb83820cf9acab4ebac987e97f61c5852bdfb6e2a0abc83db930a6d2803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alkanes</topic><topic>Alternative fuels</topic><topic>Anharmonicity</topic><topic>Autoignition</topic><topic>Combustion</topic><topic>Computation</topic><topic>Electronic structure</topic><topic>Flame retardants</topic><topic>Fluidized bed combustion</topic><topic>Hydrogen</topic><topic>Hydroperoxyalkylperoxy</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Isomerization</topic><topic>Kinetics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Oxidation</topic><topic>Pressure dependence</topic><topic>Quantum chemical calculation</topic><topic>Rate constants</topic><topic>Reaction kinetics</topic><topic>Spontaneous combustion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Lili</creatorcontrib><creatorcontrib>Bao, Junwei Lucas</creatorcontrib><creatorcontrib>Wang, Zhandong</creatorcontrib><creatorcontrib>Wang, Xuetao</creatorcontrib><creatorcontrib>Truhlar, Donald G.</creatorcontrib><creatorcontrib>Univ. of New Mexico, Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Lili</au><au>Bao, Junwei Lucas</au><au>Wang, Zhandong</au><au>Wang, Xuetao</au><au>Truhlar, Donald G.</au><aucorp>Univ. of New Mexico, Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical</atitle><jtitle>Combustion and flame</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>197</volume><spage>88</spage><epage>101</epage><pages>88-101</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Hydroperoxyalkylperoxy species are important intermediates that are generated during the autoignition of transport fuels. In combustion, the fate of hydroperoxyalkylperoxy is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the hydroperoxyalkylperoxy is a 1,5 H-shift, for which kinetics data are experimentally unavailable. In the present work, we study 1-hydroperoxypentan-3-yl)dioxidanyl (CH3CH2CH(OO)CH2CH2OOH) as a model compound to clarify the kinetics of 1,5 H-shift of hydroperoxyalkylperoxy species, in particular α-H isomerization and alternative competitive pathways. With a combination of electronic structure calculations, we determine previously missing thermochemical data, and with multipath variational transition state theory (MP-VTST), a multidimensional tunneling (MT) approximation, multiple-structure anharmonicity, and torsional potential anharmonicity, we obtained much more accurate rate constants than the ones that can computed by conventional single-structure harmonic transition state theory (TST) and than the empirically estimated rate constants that are currently used in combustion modeling. The roles of various factors in determining the rates are elucidated. The pressure-dependent rate constants for these competitive reactions are computed using system-specific quantum RRK theory. The calculated temperature range is 298–1500 K, and the pressure range is 0.01–100 atm. The accurate thermodynamic and kinetics data determined in this work are indispensable in the detailed understanding and prediction of ignition properties of hydrocarbons and alternative fuels.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2018.07.013</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2099-8472</orcidid><orcidid>https://orcid.org/0000-0002-7742-7294</orcidid><orcidid>https://orcid.org/0000-0003-1535-2319</orcidid><orcidid>https://orcid.org/0000000277427294</orcidid><orcidid>https://orcid.org/0000000320998472</orcidid><orcidid>https://orcid.org/0000000315352319</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2018-11, Vol.197, p.88-101 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_osti_scitechconnect_1612356 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Alkanes Alternative fuels Anharmonicity Autoignition Combustion Computation Electronic structure Flame retardants Fluidized bed combustion Hydrogen Hydroperoxyalkylperoxy INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Isomerization Kinetics Mathematical analysis Mathematical models Oxidation Pressure dependence Quantum chemical calculation Rate constants Reaction kinetics Spontaneous combustion |
title | Hydrogen shift isomerizations in the kinetics of the second oxidation mechanism of alkane combustion. Reactions of the hydroperoxypentylperoxy OOQOOH radical |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20shift%20isomerizations%20in%20the%20kinetics%20of%20the%20second%20oxidation%20mechanism%20of%20alkane%20combustion.%20Reactions%20of%20the%20hydroperoxypentylperoxy%20OOQOOH%20radical&rft.jtitle=Combustion%20and%20flame&rft.au=Xing,%20Lili&rft.aucorp=Univ.%20of%20New%20Mexico,%20Albuquerque,%20NM%20(United%20States)&rft.date=2018-11-01&rft.volume=197&rft.spage=88&rft.epage=101&rft.pages=88-101&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2018.07.013&rft_dat=%3Cproquest_osti_%3E2129522950%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-b1db1cbb83820cf9acab4ebac987e97f61c5852bdfb6e2a0abc83db930a6d2803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2129522950&rft_id=info:pmid/&rfr_iscdi=true |