Loading…
Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene
MXenes, a relatively new class of two-dimensional (2D) transition-metal carbides, carbonitrides, and nitrides, exhibit unique properties such as high electronic conductivity, a wide range of optical characteristics, hydrophilicity, and mechanical stability. Because of the high electronic conductivit...
Saved in:
Published in: | Chemistry of materials 2019-04, Vol.31 (8), p.2941-2951 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a369t-da8196b70cbd9325ca5f1bd3b5074becd5252a5fb249630644a590a5e973ce333 |
---|---|
cites | cdi_FETCH-LOGICAL-a369t-da8196b70cbd9325ca5f1bd3b5074becd5252a5fb249630644a590a5e973ce333 |
container_end_page | 2951 |
container_issue | 8 |
container_start_page | 2941 |
container_title | Chemistry of materials |
container_volume | 31 |
creator | Hantanasirisakul, Kanit Alhabeb, Mohamed Lipatov, Alexey Maleski, Kathleen Anasori, Babak Salles, Pol Ieosakulrat, Chanoknan Pakawatpanurut, Pasit Sinitskii, Alexander May, Steven J Gogotsi, Yury |
description | MXenes, a relatively new class of two-dimensional (2D) transition-metal carbides, carbonitrides, and nitrides, exhibit unique properties such as high electronic conductivity, a wide range of optical characteristics, hydrophilicity, and mechanical stability. Because of the high electronic conductivity, MXenes have shown promise in many applications, such as energy storage, electromagnetic interference shielding, antennas, and transparent coatings. 2D titanium carbide (Ti3C2T x , where T x represents surface terminations), the first discovered and most studied MXene, has the highest electronic conductivity exceeding 10 000 S cm–1. There have been several efforts to alter the conductivity of MXenes, such as manipulation of the transition-metal layer and control of surface terminations. However, the impact of the C and N site composition on electronic transport has not been explored. In this study, the effects of synthesis methods on optoelectronic properties of 2D titanium carbonitride, Ti3CNT x , were systematically investigated. We show that Ti3CNT x , which hosts a mix of carbon and nitrogen atoms in the X layer, has lower electronic conductivity and a blue shift of the main absorption feature within the UV–visible spectrum, compared to Ti3C2T x . Moreover, intercalants such as water and tetraalkylammonium hydroxides decrease the electronic conductivity of MXene due to increased interflake resistance, leading to an increase in resistivity with decreasing temperature as observed in ensemble transport measurements. When the intercalants are removed, Ti3CNT x exhibits its intrinsic metallic behavior in good agreement with Hall measurements and transport properties measured on single-flake field-effect transistor devices. The dependence of conductivity of Ti3CNT x on the presence of intercalants opens wide opportunities for creating MXene-based materials with tunable electronic properties. |
doi_str_mv | 10.1021/acs.chemmater.9b00401 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1612997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c983754902</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-da8196b70cbd9325ca5f1bd3b5074becd5252a5fb249630644a590a5e973ce333</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs_QQjup-ZjMtMspdQPUCpYwV1IMm9sSicpSbrovze1xa2rwLv3PPIOQreUTChh9F7bNLErGAadIU6kIaQm9AyNqGCkEoSwczQiU9lWdSuaS3SV0poQWtDpCKl534PNCYcef-x9XkFyCWvf4fcYLKTk_DcOHi-2OcCmNGPwzh7CLcTs4Bdcuqy92w14pqMpeY6uA_z2BR6u0UWvNwluTu8YfT7Ol7Pn6nXx9DJ7eK00b2SuOj2lsjEtsaaTnAmrRU9Nx40gbW3AdoIJVmaG1bLhpKlrLSTRAmTLLXDOx-juuDek7FSyLoNd2eB9-bKiDWWyNMdIHEs2hpQi9Gob3aDjXlGiDipVUan-VKqTysLRI3eI12EXfTnlH-YH0V99Nw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Hantanasirisakul, Kanit ; Alhabeb, Mohamed ; Lipatov, Alexey ; Maleski, Kathleen ; Anasori, Babak ; Salles, Pol ; Ieosakulrat, Chanoknan ; Pakawatpanurut, Pasit ; Sinitskii, Alexander ; May, Steven J ; Gogotsi, Yury</creator><creatorcontrib>Hantanasirisakul, Kanit ; Alhabeb, Mohamed ; Lipatov, Alexey ; Maleski, Kathleen ; Anasori, Babak ; Salles, Pol ; Ieosakulrat, Chanoknan ; Pakawatpanurut, Pasit ; Sinitskii, Alexander ; May, Steven J ; Gogotsi, Yury ; Drexel Univ., Philadelphia, PA (United States)</creatorcontrib><description>MXenes, a relatively new class of two-dimensional (2D) transition-metal carbides, carbonitrides, and nitrides, exhibit unique properties such as high electronic conductivity, a wide range of optical characteristics, hydrophilicity, and mechanical stability. Because of the high electronic conductivity, MXenes have shown promise in many applications, such as energy storage, electromagnetic interference shielding, antennas, and transparent coatings. 2D titanium carbide (Ti3C2T x , where T x represents surface terminations), the first discovered and most studied MXene, has the highest electronic conductivity exceeding 10 000 S cm–1. There have been several efforts to alter the conductivity of MXenes, such as manipulation of the transition-metal layer and control of surface terminations. However, the impact of the C and N site composition on electronic transport has not been explored. In this study, the effects of synthesis methods on optoelectronic properties of 2D titanium carbonitride, Ti3CNT x , were systematically investigated. We show that Ti3CNT x , which hosts a mix of carbon and nitrogen atoms in the X layer, has lower electronic conductivity and a blue shift of the main absorption feature within the UV–visible spectrum, compared to Ti3C2T x . Moreover, intercalants such as water and tetraalkylammonium hydroxides decrease the electronic conductivity of MXene due to increased interflake resistance, leading to an increase in resistivity with decreasing temperature as observed in ensemble transport measurements. When the intercalants are removed, Ti3CNT x exhibits its intrinsic metallic behavior in good agreement with Hall measurements and transport properties measured on single-flake field-effect transistor devices. The dependence of conductivity of Ti3CNT x on the presence of intercalants opens wide opportunities for creating MXene-based materials with tunable electronic properties.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b00401</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science</subject><ispartof>Chemistry of materials, 2019-04, Vol.31 (8), p.2941-2951</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-da8196b70cbd9325ca5f1bd3b5074becd5252a5fb249630644a590a5e973ce333</citedby><cites>FETCH-LOGICAL-a369t-da8196b70cbd9325ca5f1bd3b5074becd5252a5fb249630644a590a5e973ce333</cites><orcidid>0000-0002-9460-8548 ; 0000-0003-4032-7385 ; 0000-0001-9423-4032 ; 0000-0002-4890-1444 ; 0000-0001-5043-1616 ; 0000-0002-1955-253X ; 0000-0002-8688-3451 ; 0000000340327385 ; 0000000286883451 ; 0000000248901444 ; 0000000194234032 ; 000000021955253X ; 0000000150431616 ; 0000000294608548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1612997$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hantanasirisakul, Kanit</creatorcontrib><creatorcontrib>Alhabeb, Mohamed</creatorcontrib><creatorcontrib>Lipatov, Alexey</creatorcontrib><creatorcontrib>Maleski, Kathleen</creatorcontrib><creatorcontrib>Anasori, Babak</creatorcontrib><creatorcontrib>Salles, Pol</creatorcontrib><creatorcontrib>Ieosakulrat, Chanoknan</creatorcontrib><creatorcontrib>Pakawatpanurut, Pasit</creatorcontrib><creatorcontrib>Sinitskii, Alexander</creatorcontrib><creatorcontrib>May, Steven J</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Drexel Univ., Philadelphia, PA (United States)</creatorcontrib><title>Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>MXenes, a relatively new class of two-dimensional (2D) transition-metal carbides, carbonitrides, and nitrides, exhibit unique properties such as high electronic conductivity, a wide range of optical characteristics, hydrophilicity, and mechanical stability. Because of the high electronic conductivity, MXenes have shown promise in many applications, such as energy storage, electromagnetic interference shielding, antennas, and transparent coatings. 2D titanium carbide (Ti3C2T x , where T x represents surface terminations), the first discovered and most studied MXene, has the highest electronic conductivity exceeding 10 000 S cm–1. There have been several efforts to alter the conductivity of MXenes, such as manipulation of the transition-metal layer and control of surface terminations. However, the impact of the C and N site composition on electronic transport has not been explored. In this study, the effects of synthesis methods on optoelectronic properties of 2D titanium carbonitride, Ti3CNT x , were systematically investigated. We show that Ti3CNT x , which hosts a mix of carbon and nitrogen atoms in the X layer, has lower electronic conductivity and a blue shift of the main absorption feature within the UV–visible spectrum, compared to Ti3C2T x . Moreover, intercalants such as water and tetraalkylammonium hydroxides decrease the electronic conductivity of MXene due to increased interflake resistance, leading to an increase in resistivity with decreasing temperature as observed in ensemble transport measurements. When the intercalants are removed, Ti3CNT x exhibits its intrinsic metallic behavior in good agreement with Hall measurements and transport properties measured on single-flake field-effect transistor devices. The dependence of conductivity of Ti3CNT x on the presence of intercalants opens wide opportunities for creating MXene-based materials with tunable electronic properties.</description><subject>Chemistry</subject><subject>Materials Science</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKs_QQjup-ZjMtMspdQPUCpYwV1IMm9sSicpSbrovze1xa2rwLv3PPIOQreUTChh9F7bNLErGAadIU6kIaQm9AyNqGCkEoSwczQiU9lWdSuaS3SV0poQWtDpCKl534PNCYcef-x9XkFyCWvf4fcYLKTk_DcOHi-2OcCmNGPwzh7CLcTs4Bdcuqy92w14pqMpeY6uA_z2BR6u0UWvNwluTu8YfT7Ol7Pn6nXx9DJ7eK00b2SuOj2lsjEtsaaTnAmrRU9Nx40gbW3AdoIJVmaG1bLhpKlrLSTRAmTLLXDOx-juuDek7FSyLoNd2eB9-bKiDWWyNMdIHEs2hpQi9Gob3aDjXlGiDipVUan-VKqTysLRI3eI12EXfTnlH-YH0V99Nw</recordid><startdate>20190423</startdate><enddate>20190423</enddate><creator>Hantanasirisakul, Kanit</creator><creator>Alhabeb, Mohamed</creator><creator>Lipatov, Alexey</creator><creator>Maleski, Kathleen</creator><creator>Anasori, Babak</creator><creator>Salles, Pol</creator><creator>Ieosakulrat, Chanoknan</creator><creator>Pakawatpanurut, Pasit</creator><creator>Sinitskii, Alexander</creator><creator>May, Steven J</creator><creator>Gogotsi, Yury</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9460-8548</orcidid><orcidid>https://orcid.org/0000-0003-4032-7385</orcidid><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0002-4890-1444</orcidid><orcidid>https://orcid.org/0000-0001-5043-1616</orcidid><orcidid>https://orcid.org/0000-0002-1955-253X</orcidid><orcidid>https://orcid.org/0000-0002-8688-3451</orcidid><orcidid>https://orcid.org/0000000340327385</orcidid><orcidid>https://orcid.org/0000000286883451</orcidid><orcidid>https://orcid.org/0000000248901444</orcidid><orcidid>https://orcid.org/0000000194234032</orcidid><orcidid>https://orcid.org/000000021955253X</orcidid><orcidid>https://orcid.org/0000000150431616</orcidid><orcidid>https://orcid.org/0000000294608548</orcidid></search><sort><creationdate>20190423</creationdate><title>Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene</title><author>Hantanasirisakul, Kanit ; Alhabeb, Mohamed ; Lipatov, Alexey ; Maleski, Kathleen ; Anasori, Babak ; Salles, Pol ; Ieosakulrat, Chanoknan ; Pakawatpanurut, Pasit ; Sinitskii, Alexander ; May, Steven J ; Gogotsi, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-da8196b70cbd9325ca5f1bd3b5074becd5252a5fb249630644a590a5e973ce333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hantanasirisakul, Kanit</creatorcontrib><creatorcontrib>Alhabeb, Mohamed</creatorcontrib><creatorcontrib>Lipatov, Alexey</creatorcontrib><creatorcontrib>Maleski, Kathleen</creatorcontrib><creatorcontrib>Anasori, Babak</creatorcontrib><creatorcontrib>Salles, Pol</creatorcontrib><creatorcontrib>Ieosakulrat, Chanoknan</creatorcontrib><creatorcontrib>Pakawatpanurut, Pasit</creatorcontrib><creatorcontrib>Sinitskii, Alexander</creatorcontrib><creatorcontrib>May, Steven J</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Drexel Univ., Philadelphia, PA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hantanasirisakul, Kanit</au><au>Alhabeb, Mohamed</au><au>Lipatov, Alexey</au><au>Maleski, Kathleen</au><au>Anasori, Babak</au><au>Salles, Pol</au><au>Ieosakulrat, Chanoknan</au><au>Pakawatpanurut, Pasit</au><au>Sinitskii, Alexander</au><au>May, Steven J</au><au>Gogotsi, Yury</au><aucorp>Drexel Univ., Philadelphia, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2019-04-23</date><risdate>2019</risdate><volume>31</volume><issue>8</issue><spage>2941</spage><epage>2951</epage><pages>2941-2951</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>MXenes, a relatively new class of two-dimensional (2D) transition-metal carbides, carbonitrides, and nitrides, exhibit unique properties such as high electronic conductivity, a wide range of optical characteristics, hydrophilicity, and mechanical stability. Because of the high electronic conductivity, MXenes have shown promise in many applications, such as energy storage, electromagnetic interference shielding, antennas, and transparent coatings. 2D titanium carbide (Ti3C2T x , where T x represents surface terminations), the first discovered and most studied MXene, has the highest electronic conductivity exceeding 10 000 S cm–1. There have been several efforts to alter the conductivity of MXenes, such as manipulation of the transition-metal layer and control of surface terminations. However, the impact of the C and N site composition on electronic transport has not been explored. In this study, the effects of synthesis methods on optoelectronic properties of 2D titanium carbonitride, Ti3CNT x , were systematically investigated. We show that Ti3CNT x , which hosts a mix of carbon and nitrogen atoms in the X layer, has lower electronic conductivity and a blue shift of the main absorption feature within the UV–visible spectrum, compared to Ti3C2T x . Moreover, intercalants such as water and tetraalkylammonium hydroxides decrease the electronic conductivity of MXene due to increased interflake resistance, leading to an increase in resistivity with decreasing temperature as observed in ensemble transport measurements. When the intercalants are removed, Ti3CNT x exhibits its intrinsic metallic behavior in good agreement with Hall measurements and transport properties measured on single-flake field-effect transistor devices. The dependence of conductivity of Ti3CNT x on the presence of intercalants opens wide opportunities for creating MXene-based materials with tunable electronic properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b00401</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9460-8548</orcidid><orcidid>https://orcid.org/0000-0003-4032-7385</orcidid><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0002-4890-1444</orcidid><orcidid>https://orcid.org/0000-0001-5043-1616</orcidid><orcidid>https://orcid.org/0000-0002-1955-253X</orcidid><orcidid>https://orcid.org/0000-0002-8688-3451</orcidid><orcidid>https://orcid.org/0000000340327385</orcidid><orcidid>https://orcid.org/0000000286883451</orcidid><orcidid>https://orcid.org/0000000248901444</orcidid><orcidid>https://orcid.org/0000000194234032</orcidid><orcidid>https://orcid.org/000000021955253X</orcidid><orcidid>https://orcid.org/0000000150431616</orcidid><orcidid>https://orcid.org/0000000294608548</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2019-04, Vol.31 (8), p.2941-2951 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1612997 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Chemistry Materials Science |
title | Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Synthesis%20and%20Processing%20on%20Optoelectronic%20Properties%20of%20Titanium%20Carbonitride%20MXene&rft.jtitle=Chemistry%20of%20materials&rft.au=Hantanasirisakul,%20Kanit&rft.aucorp=Drexel%20Univ.,%20Philadelphia,%20PA%20(United%20States)&rft.date=2019-04-23&rft.volume=31&rft.issue=8&rft.spage=2941&rft.epage=2951&rft.pages=2941-2951&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b00401&rft_dat=%3Cacs_osti_%3Ec983754902%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a369t-da8196b70cbd9325ca5f1bd3b5074becd5252a5fb249630644a590a5e973ce333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |