Loading…

Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene

MXenes, a relatively new class of two-dimensional (2D) transition-metal carbides, carbonitrides, and nitrides, exhibit unique properties such as high electronic conductivity, a wide range of optical characteristics, hydrophilicity, and mechanical stability. Because of the high electronic conductivit...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2019-04, Vol.31 (8), p.2941-2951
Main Authors: Hantanasirisakul, Kanit, Alhabeb, Mohamed, Lipatov, Alexey, Maleski, Kathleen, Anasori, Babak, Salles, Pol, Ieosakulrat, Chanoknan, Pakawatpanurut, Pasit, Sinitskii, Alexander, May, Steven J, Gogotsi, Yury
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a369t-da8196b70cbd9325ca5f1bd3b5074becd5252a5fb249630644a590a5e973ce333
cites cdi_FETCH-LOGICAL-a369t-da8196b70cbd9325ca5f1bd3b5074becd5252a5fb249630644a590a5e973ce333
container_end_page 2951
container_issue 8
container_start_page 2941
container_title Chemistry of materials
container_volume 31
creator Hantanasirisakul, Kanit
Alhabeb, Mohamed
Lipatov, Alexey
Maleski, Kathleen
Anasori, Babak
Salles, Pol
Ieosakulrat, Chanoknan
Pakawatpanurut, Pasit
Sinitskii, Alexander
May, Steven J
Gogotsi, Yury
description MXenes, a relatively new class of two-dimensional (2D) transition-metal carbides, carbonitrides, and nitrides, exhibit unique properties such as high electronic conductivity, a wide range of optical characteristics, hydrophilicity, and mechanical stability. Because of the high electronic conductivity, MXenes have shown promise in many applications, such as energy storage, electromagnetic interference shielding, antennas, and transparent coatings. 2D titanium carbide (Ti3C2T x , where T x represents surface terminations), the first discovered and most studied MXene, has the highest electronic conductivity exceeding 10 000 S cm–1. There have been several efforts to alter the conductivity of MXenes, such as manipulation of the transition-metal layer and control of surface terminations. However, the impact of the C and N site composition on electronic transport has not been explored. In this study, the effects of synthesis methods on optoelectronic properties of 2D titanium carbonitride, Ti3CNT x , were systematically investigated. We show that Ti3CNT x , which hosts a mix of carbon and nitrogen atoms in the X layer, has lower electronic conductivity and a blue shift of the main absorption feature within the UV–visible spectrum, compared to Ti3C2T x . Moreover, intercalants such as water and tetraalkylammonium hydroxides decrease the electronic conductivity of MXene due to increased interflake resistance, leading to an increase in resistivity with decreasing temperature as observed in ensemble transport measurements. When the intercalants are removed, Ti3CNT x exhibits its intrinsic metallic behavior in good agreement with Hall measurements and transport properties measured on single-flake field-effect transistor devices. The dependence of conductivity of Ti3CNT x on the presence of intercalants opens wide opportunities for creating MXene-based materials with tunable electronic properties.
doi_str_mv 10.1021/acs.chemmater.9b00401
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1612997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c983754902</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-da8196b70cbd9325ca5f1bd3b5074becd5252a5fb249630644a590a5e973ce333</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs_QQjup-ZjMtMspdQPUCpYwV1IMm9sSicpSbrovze1xa2rwLv3PPIOQreUTChh9F7bNLErGAadIU6kIaQm9AyNqGCkEoSwczQiU9lWdSuaS3SV0poQWtDpCKl534PNCYcef-x9XkFyCWvf4fcYLKTk_DcOHi-2OcCmNGPwzh7CLcTs4Bdcuqy92w14pqMpeY6uA_z2BR6u0UWvNwluTu8YfT7Ol7Pn6nXx9DJ7eK00b2SuOj2lsjEtsaaTnAmrRU9Nx40gbW3AdoIJVmaG1bLhpKlrLSTRAmTLLXDOx-juuDek7FSyLoNd2eB9-bKiDWWyNMdIHEs2hpQi9Gob3aDjXlGiDipVUan-VKqTysLRI3eI12EXfTnlH-YH0V99Nw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hantanasirisakul, Kanit ; Alhabeb, Mohamed ; Lipatov, Alexey ; Maleski, Kathleen ; Anasori, Babak ; Salles, Pol ; Ieosakulrat, Chanoknan ; Pakawatpanurut, Pasit ; Sinitskii, Alexander ; May, Steven J ; Gogotsi, Yury</creator><creatorcontrib>Hantanasirisakul, Kanit ; Alhabeb, Mohamed ; Lipatov, Alexey ; Maleski, Kathleen ; Anasori, Babak ; Salles, Pol ; Ieosakulrat, Chanoknan ; Pakawatpanurut, Pasit ; Sinitskii, Alexander ; May, Steven J ; Gogotsi, Yury ; Drexel Univ., Philadelphia, PA (United States)</creatorcontrib><description>MXenes, a relatively new class of two-dimensional (2D) transition-metal carbides, carbonitrides, and nitrides, exhibit unique properties such as high electronic conductivity, a wide range of optical characteristics, hydrophilicity, and mechanical stability. Because of the high electronic conductivity, MXenes have shown promise in many applications, such as energy storage, electromagnetic interference shielding, antennas, and transparent coatings. 2D titanium carbide (Ti3C2T x , where T x represents surface terminations), the first discovered and most studied MXene, has the highest electronic conductivity exceeding 10 000 S cm–1. There have been several efforts to alter the conductivity of MXenes, such as manipulation of the transition-metal layer and control of surface terminations. However, the impact of the C and N site composition on electronic transport has not been explored. In this study, the effects of synthesis methods on optoelectronic properties of 2D titanium carbonitride, Ti3CNT x , were systematically investigated. We show that Ti3CNT x , which hosts a mix of carbon and nitrogen atoms in the X layer, has lower electronic conductivity and a blue shift of the main absorption feature within the UV–visible spectrum, compared to Ti3C2T x . Moreover, intercalants such as water and tetraalkylammonium hydroxides decrease the electronic conductivity of MXene due to increased interflake resistance, leading to an increase in resistivity with decreasing temperature as observed in ensemble transport measurements. When the intercalants are removed, Ti3CNT x exhibits its intrinsic metallic behavior in good agreement with Hall measurements and transport properties measured on single-flake field-effect transistor devices. The dependence of conductivity of Ti3CNT x on the presence of intercalants opens wide opportunities for creating MXene-based materials with tunable electronic properties.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b00401</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science</subject><ispartof>Chemistry of materials, 2019-04, Vol.31 (8), p.2941-2951</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-da8196b70cbd9325ca5f1bd3b5074becd5252a5fb249630644a590a5e973ce333</citedby><cites>FETCH-LOGICAL-a369t-da8196b70cbd9325ca5f1bd3b5074becd5252a5fb249630644a590a5e973ce333</cites><orcidid>0000-0002-9460-8548 ; 0000-0003-4032-7385 ; 0000-0001-9423-4032 ; 0000-0002-4890-1444 ; 0000-0001-5043-1616 ; 0000-0002-1955-253X ; 0000-0002-8688-3451 ; 0000000340327385 ; 0000000286883451 ; 0000000248901444 ; 0000000194234032 ; 000000021955253X ; 0000000150431616 ; 0000000294608548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1612997$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hantanasirisakul, Kanit</creatorcontrib><creatorcontrib>Alhabeb, Mohamed</creatorcontrib><creatorcontrib>Lipatov, Alexey</creatorcontrib><creatorcontrib>Maleski, Kathleen</creatorcontrib><creatorcontrib>Anasori, Babak</creatorcontrib><creatorcontrib>Salles, Pol</creatorcontrib><creatorcontrib>Ieosakulrat, Chanoknan</creatorcontrib><creatorcontrib>Pakawatpanurut, Pasit</creatorcontrib><creatorcontrib>Sinitskii, Alexander</creatorcontrib><creatorcontrib>May, Steven J</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Drexel Univ., Philadelphia, PA (United States)</creatorcontrib><title>Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>MXenes, a relatively new class of two-dimensional (2D) transition-metal carbides, carbonitrides, and nitrides, exhibit unique properties such as high electronic conductivity, a wide range of optical characteristics, hydrophilicity, and mechanical stability. Because of the high electronic conductivity, MXenes have shown promise in many applications, such as energy storage, electromagnetic interference shielding, antennas, and transparent coatings. 2D titanium carbide (Ti3C2T x , where T x represents surface terminations), the first discovered and most studied MXene, has the highest electronic conductivity exceeding 10 000 S cm–1. There have been several efforts to alter the conductivity of MXenes, such as manipulation of the transition-metal layer and control of surface terminations. However, the impact of the C and N site composition on electronic transport has not been explored. In this study, the effects of synthesis methods on optoelectronic properties of 2D titanium carbonitride, Ti3CNT x , were systematically investigated. We show that Ti3CNT x , which hosts a mix of carbon and nitrogen atoms in the X layer, has lower electronic conductivity and a blue shift of the main absorption feature within the UV–visible spectrum, compared to Ti3C2T x . Moreover, intercalants such as water and tetraalkylammonium hydroxides decrease the electronic conductivity of MXene due to increased interflake resistance, leading to an increase in resistivity with decreasing temperature as observed in ensemble transport measurements. When the intercalants are removed, Ti3CNT x exhibits its intrinsic metallic behavior in good agreement with Hall measurements and transport properties measured on single-flake field-effect transistor devices. The dependence of conductivity of Ti3CNT x on the presence of intercalants opens wide opportunities for creating MXene-based materials with tunable electronic properties.</description><subject>Chemistry</subject><subject>Materials Science</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKs_QQjup-ZjMtMspdQPUCpYwV1IMm9sSicpSbrovze1xa2rwLv3PPIOQreUTChh9F7bNLErGAadIU6kIaQm9AyNqGCkEoSwczQiU9lWdSuaS3SV0poQWtDpCKl534PNCYcef-x9XkFyCWvf4fcYLKTk_DcOHi-2OcCmNGPwzh7CLcTs4Bdcuqy92w14pqMpeY6uA_z2BR6u0UWvNwluTu8YfT7Ol7Pn6nXx9DJ7eK00b2SuOj2lsjEtsaaTnAmrRU9Nx40gbW3AdoIJVmaG1bLhpKlrLSTRAmTLLXDOx-juuDek7FSyLoNd2eB9-bKiDWWyNMdIHEs2hpQi9Gob3aDjXlGiDipVUan-VKqTysLRI3eI12EXfTnlH-YH0V99Nw</recordid><startdate>20190423</startdate><enddate>20190423</enddate><creator>Hantanasirisakul, Kanit</creator><creator>Alhabeb, Mohamed</creator><creator>Lipatov, Alexey</creator><creator>Maleski, Kathleen</creator><creator>Anasori, Babak</creator><creator>Salles, Pol</creator><creator>Ieosakulrat, Chanoknan</creator><creator>Pakawatpanurut, Pasit</creator><creator>Sinitskii, Alexander</creator><creator>May, Steven J</creator><creator>Gogotsi, Yury</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9460-8548</orcidid><orcidid>https://orcid.org/0000-0003-4032-7385</orcidid><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0002-4890-1444</orcidid><orcidid>https://orcid.org/0000-0001-5043-1616</orcidid><orcidid>https://orcid.org/0000-0002-1955-253X</orcidid><orcidid>https://orcid.org/0000-0002-8688-3451</orcidid><orcidid>https://orcid.org/0000000340327385</orcidid><orcidid>https://orcid.org/0000000286883451</orcidid><orcidid>https://orcid.org/0000000248901444</orcidid><orcidid>https://orcid.org/0000000194234032</orcidid><orcidid>https://orcid.org/000000021955253X</orcidid><orcidid>https://orcid.org/0000000150431616</orcidid><orcidid>https://orcid.org/0000000294608548</orcidid></search><sort><creationdate>20190423</creationdate><title>Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene</title><author>Hantanasirisakul, Kanit ; Alhabeb, Mohamed ; Lipatov, Alexey ; Maleski, Kathleen ; Anasori, Babak ; Salles, Pol ; Ieosakulrat, Chanoknan ; Pakawatpanurut, Pasit ; Sinitskii, Alexander ; May, Steven J ; Gogotsi, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-da8196b70cbd9325ca5f1bd3b5074becd5252a5fb249630644a590a5e973ce333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hantanasirisakul, Kanit</creatorcontrib><creatorcontrib>Alhabeb, Mohamed</creatorcontrib><creatorcontrib>Lipatov, Alexey</creatorcontrib><creatorcontrib>Maleski, Kathleen</creatorcontrib><creatorcontrib>Anasori, Babak</creatorcontrib><creatorcontrib>Salles, Pol</creatorcontrib><creatorcontrib>Ieosakulrat, Chanoknan</creatorcontrib><creatorcontrib>Pakawatpanurut, Pasit</creatorcontrib><creatorcontrib>Sinitskii, Alexander</creatorcontrib><creatorcontrib>May, Steven J</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Drexel Univ., Philadelphia, PA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hantanasirisakul, Kanit</au><au>Alhabeb, Mohamed</au><au>Lipatov, Alexey</au><au>Maleski, Kathleen</au><au>Anasori, Babak</au><au>Salles, Pol</au><au>Ieosakulrat, Chanoknan</au><au>Pakawatpanurut, Pasit</au><au>Sinitskii, Alexander</au><au>May, Steven J</au><au>Gogotsi, Yury</au><aucorp>Drexel Univ., Philadelphia, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2019-04-23</date><risdate>2019</risdate><volume>31</volume><issue>8</issue><spage>2941</spage><epage>2951</epage><pages>2941-2951</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>MXenes, a relatively new class of two-dimensional (2D) transition-metal carbides, carbonitrides, and nitrides, exhibit unique properties such as high electronic conductivity, a wide range of optical characteristics, hydrophilicity, and mechanical stability. Because of the high electronic conductivity, MXenes have shown promise in many applications, such as energy storage, electromagnetic interference shielding, antennas, and transparent coatings. 2D titanium carbide (Ti3C2T x , where T x represents surface terminations), the first discovered and most studied MXene, has the highest electronic conductivity exceeding 10 000 S cm–1. There have been several efforts to alter the conductivity of MXenes, such as manipulation of the transition-metal layer and control of surface terminations. However, the impact of the C and N site composition on electronic transport has not been explored. In this study, the effects of synthesis methods on optoelectronic properties of 2D titanium carbonitride, Ti3CNT x , were systematically investigated. We show that Ti3CNT x , which hosts a mix of carbon and nitrogen atoms in the X layer, has lower electronic conductivity and a blue shift of the main absorption feature within the UV–visible spectrum, compared to Ti3C2T x . Moreover, intercalants such as water and tetraalkylammonium hydroxides decrease the electronic conductivity of MXene due to increased interflake resistance, leading to an increase in resistivity with decreasing temperature as observed in ensemble transport measurements. When the intercalants are removed, Ti3CNT x exhibits its intrinsic metallic behavior in good agreement with Hall measurements and transport properties measured on single-flake field-effect transistor devices. The dependence of conductivity of Ti3CNT x on the presence of intercalants opens wide opportunities for creating MXene-based materials with tunable electronic properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b00401</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9460-8548</orcidid><orcidid>https://orcid.org/0000-0003-4032-7385</orcidid><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0002-4890-1444</orcidid><orcidid>https://orcid.org/0000-0001-5043-1616</orcidid><orcidid>https://orcid.org/0000-0002-1955-253X</orcidid><orcidid>https://orcid.org/0000-0002-8688-3451</orcidid><orcidid>https://orcid.org/0000000340327385</orcidid><orcidid>https://orcid.org/0000000286883451</orcidid><orcidid>https://orcid.org/0000000248901444</orcidid><orcidid>https://orcid.org/0000000194234032</orcidid><orcidid>https://orcid.org/000000021955253X</orcidid><orcidid>https://orcid.org/0000000150431616</orcidid><orcidid>https://orcid.org/0000000294608548</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2019-04, Vol.31 (8), p.2941-2951
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1612997
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemistry
Materials Science
title Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Synthesis%20and%20Processing%20on%20Optoelectronic%20Properties%20of%20Titanium%20Carbonitride%20MXene&rft.jtitle=Chemistry%20of%20materials&rft.au=Hantanasirisakul,%20Kanit&rft.aucorp=Drexel%20Univ.,%20Philadelphia,%20PA%20(United%20States)&rft.date=2019-04-23&rft.volume=31&rft.issue=8&rft.spage=2941&rft.epage=2951&rft.pages=2941-2951&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b00401&rft_dat=%3Cacs_osti_%3Ec983754902%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a369t-da8196b70cbd9325ca5f1bd3b5074becd5252a5fb249630644a590a5e973ce333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true