Loading…

Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock

We present a numerical analysis on injection-induced crack propagation and coalescence in brittle rock. The DEM network coupling model in PFC is modified to capture the evolution of fracture geometry. An improved fluid flow model for fractured porous media is proposed and coupled with a bond-based D...

Full description

Saved in:
Bibliographic Details
Published in:Acta geotechnica 2019-06, Vol.14 (3), p.843-868
Main Authors: Liu, Guang, Sun, WaiChing, Lowinger, Steven M., Zhang, ZhenHua, Huang, Ming, Peng, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a409t-22a6060dfac35b59fd49bf3c6cbd9064fd7501052cde69d20a3ecf42d5dc1d7f3
cites cdi_FETCH-LOGICAL-a409t-22a6060dfac35b59fd49bf3c6cbd9064fd7501052cde69d20a3ecf42d5dc1d7f3
container_end_page 868
container_issue 3
container_start_page 843
container_title Acta geotechnica
container_volume 14
creator Liu, Guang
Sun, WaiChing
Lowinger, Steven M.
Zhang, ZhenHua
Huang, Ming
Peng, Jun
description We present a numerical analysis on injection-induced crack propagation and coalescence in brittle rock. The DEM network coupling model in PFC is modified to capture the evolution of fracture geometry. An improved fluid flow model for fractured porous media is proposed and coupled with a bond-based DEM model to simulate the interactions among cracks induced by injecting fluid in two nearby flaws at identical injection rates. The material parameters are calibrated based on the macro-properties of Lac du Bonnet granite and KGD solution. A grain-based model, which generates larger grains from assembles of particles bonded together, is calibrated to identify the microscopic mechanical and hydraulic parameters of Lac du Bonnet granite such that the DEM model yields a ratio between the compressive and tensile strength consistent with experiments. The simulations of fluid injection reveal that the initial flaw direction plays a crucial role in crack interaction and coalescence pattern. When two initial flaws are aligned, cracks generally propagate faster. Some geometrical measures from graph theory are used to analyze the geometry and connectivity of the crack network. The results reveal that initial flaws in the same direction may lead to a well-connected crack network with higher global efficiency.
doi_str_mv 10.1007/s11440-018-0682-1
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1613920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2052645286</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-22a6060dfac35b59fd49bf3c6cbd9064fd7501052cde69d20a3ecf42d5dc1d7f3</originalsourceid><addsrcrecordid>eNp1kcFqGzEQhpeSQJM0D9CbaM7bzGh3Ze8xmDYNBHppz0IejVzZa8mRZELevnI3NKecNKDv-5nhb5rPCF8RYHGbEfseWsBlC2opW_zQXOBSYYvYdWf_Zzl8bC5z3gKoTvbqonlZxeNhYivcFJ9F4PIc006YYIX1mRIXFjzxnkMR-2h58mEjohM-bJmKj6H1wR6p-pQM7cQhxYPZmNPPvxCKZuJMHIirI9bJlzKxSJF2n5pzZ6bM16_vVfP7-7dfqx_t48_7h9XdY2t6GEsrpVGgwDpD3bAeRmf7ce06UrS2I6je2cUACIMky2q0EkzH5HppB0toF667ar7MuTEXrzP5wvSHYgj1AI0Ku1FChW5mqB7wdORc9DYeU6h7aVmzVT_IpaoUzhSlmHNipw_J70160Qj6VIOea9C1Bn2qQWN15OzkyoYNp7fk96W_hdmMfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2052645286</pqid></control><display><type>article</type><title>Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock</title><source>Springer Link</source><creator>Liu, Guang ; Sun, WaiChing ; Lowinger, Steven M. ; Zhang, ZhenHua ; Huang, Ming ; Peng, Jun</creator><creatorcontrib>Liu, Guang ; Sun, WaiChing ; Lowinger, Steven M. ; Zhang, ZhenHua ; Huang, Ming ; Peng, Jun ; Columbia Univ., New York, NY (United States)</creatorcontrib><description>We present a numerical analysis on injection-induced crack propagation and coalescence in brittle rock. The DEM network coupling model in PFC is modified to capture the evolution of fracture geometry. An improved fluid flow model for fractured porous media is proposed and coupled with a bond-based DEM model to simulate the interactions among cracks induced by injecting fluid in two nearby flaws at identical injection rates. The material parameters are calibrated based on the macro-properties of Lac du Bonnet granite and KGD solution. A grain-based model, which generates larger grains from assembles of particles bonded together, is calibrated to identify the microscopic mechanical and hydraulic parameters of Lac du Bonnet granite such that the DEM model yields a ratio between the compressive and tensile strength consistent with experiments. The simulations of fluid injection reveal that the initial flaw direction plays a crucial role in crack interaction and coalescence pattern. When two initial flaws are aligned, cracks generally propagate faster. Some geometrical measures from graph theory are used to analyze the geometry and connectivity of the crack network. The results reveal that initial flaws in the same direction may lead to a well-connected crack network with higher global efficiency.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-018-0682-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Coalescence ; Coalescing ; Complex Fluids and Microfluidics ; Compressive strength ; Computational fluid dynamics ; Computer simulation ; Crack propagation ; Cracks ; Direction ; Discrete element method ; Engineering ; Fluid flow ; Fluid injection ; Foundations ; Fracture mechanics ; Fractures ; Geoengineering ; Geotechnical Engineering &amp; Applied Earth Sciences ; Grain ; Granite ; Graph theory ; Hydraulics ; Injection ; Interactions ; Mathematical models ; Modelling ; Numerical analysis ; Parameter identification ; Parameters ; Porous media ; Research Paper ; Rocks ; Soft and Granular Matter ; Soil Science &amp; Conservation ; Solid Mechanics ; Stone</subject><ispartof>Acta geotechnica, 2019-06, Vol.14 (3), p.843-868</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Acta Geotechnica is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-22a6060dfac35b59fd49bf3c6cbd9064fd7501052cde69d20a3ecf42d5dc1d7f3</citedby><cites>FETCH-LOGICAL-a409t-22a6060dfac35b59fd49bf3c6cbd9064fd7501052cde69d20a3ecf42d5dc1d7f3</cites><orcidid>0000-0002-3078-5086 ; 0000000230785086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1613920$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Guang</creatorcontrib><creatorcontrib>Sun, WaiChing</creatorcontrib><creatorcontrib>Lowinger, Steven M.</creatorcontrib><creatorcontrib>Zhang, ZhenHua</creatorcontrib><creatorcontrib>Huang, Ming</creatorcontrib><creatorcontrib>Peng, Jun</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><title>Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>We present a numerical analysis on injection-induced crack propagation and coalescence in brittle rock. The DEM network coupling model in PFC is modified to capture the evolution of fracture geometry. An improved fluid flow model for fractured porous media is proposed and coupled with a bond-based DEM model to simulate the interactions among cracks induced by injecting fluid in two nearby flaws at identical injection rates. The material parameters are calibrated based on the macro-properties of Lac du Bonnet granite and KGD solution. A grain-based model, which generates larger grains from assembles of particles bonded together, is calibrated to identify the microscopic mechanical and hydraulic parameters of Lac du Bonnet granite such that the DEM model yields a ratio between the compressive and tensile strength consistent with experiments. The simulations of fluid injection reveal that the initial flaw direction plays a crucial role in crack interaction and coalescence pattern. When two initial flaws are aligned, cracks generally propagate faster. Some geometrical measures from graph theory are used to analyze the geometry and connectivity of the crack network. The results reveal that initial flaws in the same direction may lead to a well-connected crack network with higher global efficiency.</description><subject>Coalescence</subject><subject>Coalescing</subject><subject>Complex Fluids and Microfluidics</subject><subject>Compressive strength</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Direction</subject><subject>Discrete element method</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Fluid injection</subject><subject>Foundations</subject><subject>Fracture mechanics</subject><subject>Fractures</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Grain</subject><subject>Granite</subject><subject>Graph theory</subject><subject>Hydraulics</subject><subject>Injection</subject><subject>Interactions</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Numerical analysis</subject><subject>Parameter identification</subject><subject>Parameters</subject><subject>Porous media</subject><subject>Research Paper</subject><subject>Rocks</subject><subject>Soft and Granular Matter</subject><subject>Soil Science &amp; Conservation</subject><subject>Solid Mechanics</subject><subject>Stone</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kcFqGzEQhpeSQJM0D9CbaM7bzGh3Ze8xmDYNBHppz0IejVzZa8mRZELevnI3NKecNKDv-5nhb5rPCF8RYHGbEfseWsBlC2opW_zQXOBSYYvYdWf_Zzl8bC5z3gKoTvbqonlZxeNhYivcFJ9F4PIc006YYIX1mRIXFjzxnkMR-2h58mEjohM-bJmKj6H1wR6p-pQM7cQhxYPZmNPPvxCKZuJMHIirI9bJlzKxSJF2n5pzZ6bM16_vVfP7-7dfqx_t48_7h9XdY2t6GEsrpVGgwDpD3bAeRmf7ce06UrS2I6je2cUACIMky2q0EkzH5HppB0toF667ar7MuTEXrzP5wvSHYgj1AI0Ku1FChW5mqB7wdORc9DYeU6h7aVmzVT_IpaoUzhSlmHNipw_J70160Qj6VIOea9C1Bn2qQWN15OzkyoYNp7fk96W_hdmMfQ</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Liu, Guang</creator><creator>Sun, WaiChing</creator><creator>Lowinger, Steven M.</creator><creator>Zhang, ZhenHua</creator><creator>Huang, Ming</creator><creator>Peng, Jun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3078-5086</orcidid><orcidid>https://orcid.org/0000000230785086</orcidid></search><sort><creationdate>20190601</creationdate><title>Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock</title><author>Liu, Guang ; Sun, WaiChing ; Lowinger, Steven M. ; Zhang, ZhenHua ; Huang, Ming ; Peng, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-22a6060dfac35b59fd49bf3c6cbd9064fd7501052cde69d20a3ecf42d5dc1d7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coalescence</topic><topic>Coalescing</topic><topic>Complex Fluids and Microfluidics</topic><topic>Compressive strength</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Direction</topic><topic>Discrete element method</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Fluid injection</topic><topic>Foundations</topic><topic>Fracture mechanics</topic><topic>Fractures</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Grain</topic><topic>Granite</topic><topic>Graph theory</topic><topic>Hydraulics</topic><topic>Injection</topic><topic>Interactions</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Numerical analysis</topic><topic>Parameter identification</topic><topic>Parameters</topic><topic>Porous media</topic><topic>Research Paper</topic><topic>Rocks</topic><topic>Soft and Granular Matter</topic><topic>Soil Science &amp; Conservation</topic><topic>Solid Mechanics</topic><topic>Stone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guang</creatorcontrib><creatorcontrib>Sun, WaiChing</creatorcontrib><creatorcontrib>Lowinger, Steven M.</creatorcontrib><creatorcontrib>Zhang, ZhenHua</creatorcontrib><creatorcontrib>Huang, Ming</creatorcontrib><creatorcontrib>Peng, Jun</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guang</au><au>Sun, WaiChing</au><au>Lowinger, Steven M.</au><au>Zhang, ZhenHua</au><au>Huang, Ming</au><au>Peng, Jun</au><aucorp>Columbia Univ., New York, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>14</volume><issue>3</issue><spage>843</spage><epage>868</epage><pages>843-868</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>We present a numerical analysis on injection-induced crack propagation and coalescence in brittle rock. The DEM network coupling model in PFC is modified to capture the evolution of fracture geometry. An improved fluid flow model for fractured porous media is proposed and coupled with a bond-based DEM model to simulate the interactions among cracks induced by injecting fluid in two nearby flaws at identical injection rates. The material parameters are calibrated based on the macro-properties of Lac du Bonnet granite and KGD solution. A grain-based model, which generates larger grains from assembles of particles bonded together, is calibrated to identify the microscopic mechanical and hydraulic parameters of Lac du Bonnet granite such that the DEM model yields a ratio between the compressive and tensile strength consistent with experiments. The simulations of fluid injection reveal that the initial flaw direction plays a crucial role in crack interaction and coalescence pattern. When two initial flaws are aligned, cracks generally propagate faster. Some geometrical measures from graph theory are used to analyze the geometry and connectivity of the crack network. The results reveal that initial flaws in the same direction may lead to a well-connected crack network with higher global efficiency.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-018-0682-1</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-3078-5086</orcidid><orcidid>https://orcid.org/0000000230785086</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1861-1125
ispartof Acta geotechnica, 2019-06, Vol.14 (3), p.843-868
issn 1861-1125
1861-1133
language eng
recordid cdi_osti_scitechconnect_1613920
source Springer Link
subjects Coalescence
Coalescing
Complex Fluids and Microfluidics
Compressive strength
Computational fluid dynamics
Computer simulation
Crack propagation
Cracks
Direction
Discrete element method
Engineering
Fluid flow
Fluid injection
Foundations
Fracture mechanics
Fractures
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
Grain
Granite
Graph theory
Hydraulics
Injection
Interactions
Mathematical models
Modelling
Numerical analysis
Parameter identification
Parameters
Porous media
Research Paper
Rocks
Soft and Granular Matter
Soil Science & Conservation
Solid Mechanics
Stone
title Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20flow%20network%20and%20discrete%20element%20modeling%20of%20injection-induced%20crack%20propagation%20and%20coalescence%20in%20brittle%20rock&rft.jtitle=Acta%20geotechnica&rft.au=Liu,%20Guang&rft.aucorp=Columbia%20Univ.,%20New%20York,%20NY%20(United%20States)&rft.date=2019-06-01&rft.volume=14&rft.issue=3&rft.spage=843&rft.epage=868&rft.pages=843-868&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-018-0682-1&rft_dat=%3Cproquest_osti_%3E2052645286%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a409t-22a6060dfac35b59fd49bf3c6cbd9064fd7501052cde69d20a3ecf42d5dc1d7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2052645286&rft_id=info:pmid/&rfr_iscdi=true