Loading…
Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock
We present a numerical analysis on injection-induced crack propagation and coalescence in brittle rock. The DEM network coupling model in PFC is modified to capture the evolution of fracture geometry. An improved fluid flow model for fractured porous media is proposed and coupled with a bond-based D...
Saved in:
Published in: | Acta geotechnica 2019-06, Vol.14 (3), p.843-868 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a409t-22a6060dfac35b59fd49bf3c6cbd9064fd7501052cde69d20a3ecf42d5dc1d7f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a409t-22a6060dfac35b59fd49bf3c6cbd9064fd7501052cde69d20a3ecf42d5dc1d7f3 |
container_end_page | 868 |
container_issue | 3 |
container_start_page | 843 |
container_title | Acta geotechnica |
container_volume | 14 |
creator | Liu, Guang Sun, WaiChing Lowinger, Steven M. Zhang, ZhenHua Huang, Ming Peng, Jun |
description | We present a numerical analysis on injection-induced crack propagation and coalescence in brittle rock. The DEM network coupling model in PFC is modified to capture the evolution of fracture geometry. An improved fluid flow model for fractured porous media is proposed and coupled with a bond-based DEM model to simulate the interactions among cracks induced by injecting fluid in two nearby flaws at identical injection rates. The material parameters are calibrated based on the macro-properties of Lac du Bonnet granite and KGD solution. A grain-based model, which generates larger grains from assembles of particles bonded together, is calibrated to identify the microscopic mechanical and hydraulic parameters of Lac du Bonnet granite such that the DEM model yields a ratio between the compressive and tensile strength consistent with experiments. The simulations of fluid injection reveal that the initial flaw direction plays a crucial role in crack interaction and coalescence pattern. When two initial flaws are aligned, cracks generally propagate faster. Some geometrical measures from graph theory are used to analyze the geometry and connectivity of the crack network. The results reveal that initial flaws in the same direction may lead to a well-connected crack network with higher global efficiency. |
doi_str_mv | 10.1007/s11440-018-0682-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1613920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2052645286</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-22a6060dfac35b59fd49bf3c6cbd9064fd7501052cde69d20a3ecf42d5dc1d7f3</originalsourceid><addsrcrecordid>eNp1kcFqGzEQhpeSQJM0D9CbaM7bzGh3Ze8xmDYNBHppz0IejVzZa8mRZELevnI3NKecNKDv-5nhb5rPCF8RYHGbEfseWsBlC2opW_zQXOBSYYvYdWf_Zzl8bC5z3gKoTvbqonlZxeNhYivcFJ9F4PIc006YYIX1mRIXFjzxnkMR-2h58mEjohM-bJmKj6H1wR6p-pQM7cQhxYPZmNPPvxCKZuJMHIirI9bJlzKxSJF2n5pzZ6bM16_vVfP7-7dfqx_t48_7h9XdY2t6GEsrpVGgwDpD3bAeRmf7ce06UrS2I6je2cUACIMky2q0EkzH5HppB0toF667ar7MuTEXrzP5wvSHYgj1AI0Ku1FChW5mqB7wdORc9DYeU6h7aVmzVT_IpaoUzhSlmHNipw_J70160Qj6VIOea9C1Bn2qQWN15OzkyoYNp7fk96W_hdmMfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2052645286</pqid></control><display><type>article</type><title>Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock</title><source>Springer Link</source><creator>Liu, Guang ; Sun, WaiChing ; Lowinger, Steven M. ; Zhang, ZhenHua ; Huang, Ming ; Peng, Jun</creator><creatorcontrib>Liu, Guang ; Sun, WaiChing ; Lowinger, Steven M. ; Zhang, ZhenHua ; Huang, Ming ; Peng, Jun ; Columbia Univ., New York, NY (United States)</creatorcontrib><description>We present a numerical analysis on injection-induced crack propagation and coalescence in brittle rock. The DEM network coupling model in PFC is modified to capture the evolution of fracture geometry. An improved fluid flow model for fractured porous media is proposed and coupled with a bond-based DEM model to simulate the interactions among cracks induced by injecting fluid in two nearby flaws at identical injection rates. The material parameters are calibrated based on the macro-properties of Lac du Bonnet granite and KGD solution. A grain-based model, which generates larger grains from assembles of particles bonded together, is calibrated to identify the microscopic mechanical and hydraulic parameters of Lac du Bonnet granite such that the DEM model yields a ratio between the compressive and tensile strength consistent with experiments. The simulations of fluid injection reveal that the initial flaw direction plays a crucial role in crack interaction and coalescence pattern. When two initial flaws are aligned, cracks generally propagate faster. Some geometrical measures from graph theory are used to analyze the geometry and connectivity of the crack network. The results reveal that initial flaws in the same direction may lead to a well-connected crack network with higher global efficiency.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-018-0682-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Coalescence ; Coalescing ; Complex Fluids and Microfluidics ; Compressive strength ; Computational fluid dynamics ; Computer simulation ; Crack propagation ; Cracks ; Direction ; Discrete element method ; Engineering ; Fluid flow ; Fluid injection ; Foundations ; Fracture mechanics ; Fractures ; Geoengineering ; Geotechnical Engineering & Applied Earth Sciences ; Grain ; Granite ; Graph theory ; Hydraulics ; Injection ; Interactions ; Mathematical models ; Modelling ; Numerical analysis ; Parameter identification ; Parameters ; Porous media ; Research Paper ; Rocks ; Soft and Granular Matter ; Soil Science & Conservation ; Solid Mechanics ; Stone</subject><ispartof>Acta geotechnica, 2019-06, Vol.14 (3), p.843-868</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Acta Geotechnica is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-22a6060dfac35b59fd49bf3c6cbd9064fd7501052cde69d20a3ecf42d5dc1d7f3</citedby><cites>FETCH-LOGICAL-a409t-22a6060dfac35b59fd49bf3c6cbd9064fd7501052cde69d20a3ecf42d5dc1d7f3</cites><orcidid>0000-0002-3078-5086 ; 0000000230785086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1613920$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Guang</creatorcontrib><creatorcontrib>Sun, WaiChing</creatorcontrib><creatorcontrib>Lowinger, Steven M.</creatorcontrib><creatorcontrib>Zhang, ZhenHua</creatorcontrib><creatorcontrib>Huang, Ming</creatorcontrib><creatorcontrib>Peng, Jun</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><title>Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>We present a numerical analysis on injection-induced crack propagation and coalescence in brittle rock. The DEM network coupling model in PFC is modified to capture the evolution of fracture geometry. An improved fluid flow model for fractured porous media is proposed and coupled with a bond-based DEM model to simulate the interactions among cracks induced by injecting fluid in two nearby flaws at identical injection rates. The material parameters are calibrated based on the macro-properties of Lac du Bonnet granite and KGD solution. A grain-based model, which generates larger grains from assembles of particles bonded together, is calibrated to identify the microscopic mechanical and hydraulic parameters of Lac du Bonnet granite such that the DEM model yields a ratio between the compressive and tensile strength consistent with experiments. The simulations of fluid injection reveal that the initial flaw direction plays a crucial role in crack interaction and coalescence pattern. When two initial flaws are aligned, cracks generally propagate faster. Some geometrical measures from graph theory are used to analyze the geometry and connectivity of the crack network. The results reveal that initial flaws in the same direction may lead to a well-connected crack network with higher global efficiency.</description><subject>Coalescence</subject><subject>Coalescing</subject><subject>Complex Fluids and Microfluidics</subject><subject>Compressive strength</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Direction</subject><subject>Discrete element method</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Fluid injection</subject><subject>Foundations</subject><subject>Fracture mechanics</subject><subject>Fractures</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Grain</subject><subject>Granite</subject><subject>Graph theory</subject><subject>Hydraulics</subject><subject>Injection</subject><subject>Interactions</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Numerical analysis</subject><subject>Parameter identification</subject><subject>Parameters</subject><subject>Porous media</subject><subject>Research Paper</subject><subject>Rocks</subject><subject>Soft and Granular Matter</subject><subject>Soil Science & Conservation</subject><subject>Solid Mechanics</subject><subject>Stone</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kcFqGzEQhpeSQJM0D9CbaM7bzGh3Ze8xmDYNBHppz0IejVzZa8mRZELevnI3NKecNKDv-5nhb5rPCF8RYHGbEfseWsBlC2opW_zQXOBSYYvYdWf_Zzl8bC5z3gKoTvbqonlZxeNhYivcFJ9F4PIc006YYIX1mRIXFjzxnkMR-2h58mEjohM-bJmKj6H1wR6p-pQM7cQhxYPZmNPPvxCKZuJMHIirI9bJlzKxSJF2n5pzZ6bM16_vVfP7-7dfqx_t48_7h9XdY2t6GEsrpVGgwDpD3bAeRmf7ce06UrS2I6je2cUACIMky2q0EkzH5HppB0toF667ar7MuTEXrzP5wvSHYgj1AI0Ku1FChW5mqB7wdORc9DYeU6h7aVmzVT_IpaoUzhSlmHNipw_J70160Qj6VIOea9C1Bn2qQWN15OzkyoYNp7fk96W_hdmMfQ</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Liu, Guang</creator><creator>Sun, WaiChing</creator><creator>Lowinger, Steven M.</creator><creator>Zhang, ZhenHua</creator><creator>Huang, Ming</creator><creator>Peng, Jun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3078-5086</orcidid><orcidid>https://orcid.org/0000000230785086</orcidid></search><sort><creationdate>20190601</creationdate><title>Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock</title><author>Liu, Guang ; Sun, WaiChing ; Lowinger, Steven M. ; Zhang, ZhenHua ; Huang, Ming ; Peng, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-22a6060dfac35b59fd49bf3c6cbd9064fd7501052cde69d20a3ecf42d5dc1d7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coalescence</topic><topic>Coalescing</topic><topic>Complex Fluids and Microfluidics</topic><topic>Compressive strength</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Direction</topic><topic>Discrete element method</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Fluid injection</topic><topic>Foundations</topic><topic>Fracture mechanics</topic><topic>Fractures</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Grain</topic><topic>Granite</topic><topic>Graph theory</topic><topic>Hydraulics</topic><topic>Injection</topic><topic>Interactions</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Numerical analysis</topic><topic>Parameter identification</topic><topic>Parameters</topic><topic>Porous media</topic><topic>Research Paper</topic><topic>Rocks</topic><topic>Soft and Granular Matter</topic><topic>Soil Science & Conservation</topic><topic>Solid Mechanics</topic><topic>Stone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guang</creatorcontrib><creatorcontrib>Sun, WaiChing</creatorcontrib><creatorcontrib>Lowinger, Steven M.</creatorcontrib><creatorcontrib>Zhang, ZhenHua</creatorcontrib><creatorcontrib>Huang, Ming</creatorcontrib><creatorcontrib>Peng, Jun</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guang</au><au>Sun, WaiChing</au><au>Lowinger, Steven M.</au><au>Zhang, ZhenHua</au><au>Huang, Ming</au><au>Peng, Jun</au><aucorp>Columbia Univ., New York, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>14</volume><issue>3</issue><spage>843</spage><epage>868</epage><pages>843-868</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>We present a numerical analysis on injection-induced crack propagation and coalescence in brittle rock. The DEM network coupling model in PFC is modified to capture the evolution of fracture geometry. An improved fluid flow model for fractured porous media is proposed and coupled with a bond-based DEM model to simulate the interactions among cracks induced by injecting fluid in two nearby flaws at identical injection rates. The material parameters are calibrated based on the macro-properties of Lac du Bonnet granite and KGD solution. A grain-based model, which generates larger grains from assembles of particles bonded together, is calibrated to identify the microscopic mechanical and hydraulic parameters of Lac du Bonnet granite such that the DEM model yields a ratio between the compressive and tensile strength consistent with experiments. The simulations of fluid injection reveal that the initial flaw direction plays a crucial role in crack interaction and coalescence pattern. When two initial flaws are aligned, cracks generally propagate faster. Some geometrical measures from graph theory are used to analyze the geometry and connectivity of the crack network. The results reveal that initial flaws in the same direction may lead to a well-connected crack network with higher global efficiency.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-018-0682-1</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-3078-5086</orcidid><orcidid>https://orcid.org/0000000230785086</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-1125 |
ispartof | Acta geotechnica, 2019-06, Vol.14 (3), p.843-868 |
issn | 1861-1125 1861-1133 |
language | eng |
recordid | cdi_osti_scitechconnect_1613920 |
source | Springer Link |
subjects | Coalescence Coalescing Complex Fluids and Microfluidics Compressive strength Computational fluid dynamics Computer simulation Crack propagation Cracks Direction Discrete element method Engineering Fluid flow Fluid injection Foundations Fracture mechanics Fractures Geoengineering Geotechnical Engineering & Applied Earth Sciences Grain Granite Graph theory Hydraulics Injection Interactions Mathematical models Modelling Numerical analysis Parameter identification Parameters Porous media Research Paper Rocks Soft and Granular Matter Soil Science & Conservation Solid Mechanics Stone |
title | Coupled flow network and discrete element modeling of injection-induced crack propagation and coalescence in brittle rock |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20flow%20network%20and%20discrete%20element%20modeling%20of%20injection-induced%20crack%20propagation%20and%20coalescence%20in%20brittle%20rock&rft.jtitle=Acta%20geotechnica&rft.au=Liu,%20Guang&rft.aucorp=Columbia%20Univ.,%20New%20York,%20NY%20(United%20States)&rft.date=2019-06-01&rft.volume=14&rft.issue=3&rft.spage=843&rft.epage=868&rft.pages=843-868&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-018-0682-1&rft_dat=%3Cproquest_osti_%3E2052645286%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a409t-22a6060dfac35b59fd49bf3c6cbd9064fd7501052cde69d20a3ecf42d5dc1d7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2052645286&rft_id=info:pmid/&rfr_iscdi=true |