Loading…

Drag of a heated sphere at low Reynolds numbers in the absence of buoyancy

Fully resolved simulations are used to quantify the effects of heat transfer in the absence of buoyancy on the drag of a spatially fixed heated spherical particle at low Reynolds numbers ( $Re$ ) in the range $10^{-3}\leqslant Re\leqslant 10$ in a variable-property fluid. The case where buoyancy is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2019-06, Vol.869, p.264-291
Main Authors: Ganguli, Swetava, Lele, Sanjiva K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fully resolved simulations are used to quantify the effects of heat transfer in the absence of buoyancy on the drag of a spatially fixed heated spherical particle at low Reynolds numbers ( $Re$ ) in the range $10^{-3}\leqslant Re\leqslant 10$ in a variable-property fluid. The case where buoyancy is present is analysed in a subsequent paper. This analysis is carried out without making any assumptions on the amount of heat addition from the sphere and thus encompasses both the heating regime where the Boussinesq approximation holds and the regime where it breaks down. The particle is assumed to have a low Biot number, which means that the particle is uniformly at the same temperature and has no internal temperature gradients. Large deviations in the value of the drag coefficient as the temperature of the sphere increases are observed. When $Re
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2019.187