Loading…
Colloidal Gelation in Liquid Metals Enables Functional Nanocomposites of 2D Metal Carbides (MXenes) and Lightweight Metals
Nanomaterials dispersed in different media, such as liquids or polymers, generate a variety of functional composites with synergistic properties. In this work, we discuss liquid metals as the nanomaterials’ dispersion media. For example, 2D transition-metal carbides and nitrides (MXenes) can be effi...
Saved in:
Published in: | ACS nano 2019-11, Vol.13 (11), p.12415-12424 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a401t-ee6b540ac1821115b83b4fa62073d7c45486636aa8906d3f2e7088f3f67e03f43 |
---|---|
cites | cdi_FETCH-LOGICAL-a401t-ee6b540ac1821115b83b4fa62073d7c45486636aa8906d3f2e7088f3f67e03f43 |
container_end_page | 12424 |
container_issue | 11 |
container_start_page | 12415 |
container_title | ACS nano |
container_volume | 13 |
creator | Kamysbayev, Vladislav James, Nicole M Filatov, Alexander S Srivastava, Vishwas Anasori, Babak Jaeger, Heinrich M Gogotsi, Yury Talapin, Dmitri V |
description | Nanomaterials dispersed in different media, such as liquids or polymers, generate a variety of functional composites with synergistic properties. In this work, we discuss liquid metals as the nanomaterials’ dispersion media. For example, 2D transition-metal carbides and nitrides (MXenes) can be efficiently dispersed in liquid Ga and lightweight alloys of Al, Mg, and Li. We show that the Lifshitz theory predicts strong van der Waals attraction between nanoscale objects interacting through liquid metals. However, a uniform distribution of MXenes in liquid metals can be achieved through colloidal gelation, where particles form self-supporting networks stable against macroscopic phase segregation. This network acts as a reinforcement boosting mechanical properties of the resulting metal–matrix composite. By choosing Mg–Li alloy as an example of ultralightweight metal matrix and Ti3C2T x MXene as a nanoscale reinforcement, we apply a liquid metal gelation technique to fabricate functional nanocomposites with an up to 57% increase in the specific yield strength without compromising the matrix alloy’s plasticity. MXenes largely retain their phase and 2D morphology after processing in liquid Mg–Li alloy at 700 °C. The 2D morphology enables formation of a strong semicoherent interface between MXene and metal matrix, manifested by biaxial strain of the MXene lattice inside the metal matrix. This work expands applications for MXenes and shows the potential for developing MXene-reinforced metal matrix composites for structural alloys and other emerging applications with metal–MXene interfaces, such as batteries and supercapacitors. |
doi_str_mv | 10.1021/acsnano.9b06207 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1615626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299144704</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-ee6b540ac1821115b83b4fa62073d7c45486636aa8906d3f2e7088f3f67e03f43</originalsourceid><addsrcrecordid>eNp1kU1PhDAQhhujcXX17M00njSG3ZZCgaPBz2RXL5p4a0oZtAbalUKM_npLwL156TQzz7ztzIvQCSULSkK6lMoZaewiKwgPSbKDDmjGeEBS_rq7vcd0hg6d-yAkTtKE76MZozEf8gfoJ7d1bXUpa3wHtey0NVgbvNKfvS7xGjpZO3xjZFGDw7e9UQPh4Uf_qrLNxjrd-YqtcHg94jiXbaFLnzxfv4IBd4GlKb3i23v3BcM5yR6hvcoHOJ7iHL3c3jzn98Hq6e4hv1oFMiK0CwB4EUdEKpqGlNK4SFkRVXIYl5WJiuIo5ZxxKdOM8JJVISQkTStW8QQIqyI2R2ejrnWdFk75D6t3ZY0B1QnK_SpC7qHzEdq09rMH14lGOwV1LQ3Y3okwzDIaRQkZ9JYjqlrrXAuV2LS6ke23oEQMrojJFTG54jtOJ_G-aKDc8n82eOByBHyn-LB961fs_pX7BQUKl1E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299144704</pqid></control><display><type>article</type><title>Colloidal Gelation in Liquid Metals Enables Functional Nanocomposites of 2D Metal Carbides (MXenes) and Lightweight Metals</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Kamysbayev, Vladislav ; James, Nicole M ; Filatov, Alexander S ; Srivastava, Vishwas ; Anasori, Babak ; Jaeger, Heinrich M ; Gogotsi, Yury ; Talapin, Dmitri V</creator><creatorcontrib>Kamysbayev, Vladislav ; James, Nicole M ; Filatov, Alexander S ; Srivastava, Vishwas ; Anasori, Babak ; Jaeger, Heinrich M ; Gogotsi, Yury ; Talapin, Dmitri V ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Nanomaterials dispersed in different media, such as liquids or polymers, generate a variety of functional composites with synergistic properties. In this work, we discuss liquid metals as the nanomaterials’ dispersion media. For example, 2D transition-metal carbides and nitrides (MXenes) can be efficiently dispersed in liquid Ga and lightweight alloys of Al, Mg, and Li. We show that the Lifshitz theory predicts strong van der Waals attraction between nanoscale objects interacting through liquid metals. However, a uniform distribution of MXenes in liquid metals can be achieved through colloidal gelation, where particles form self-supporting networks stable against macroscopic phase segregation. This network acts as a reinforcement boosting mechanical properties of the resulting metal–matrix composite. By choosing Mg–Li alloy as an example of ultralightweight metal matrix and Ti3C2T x MXene as a nanoscale reinforcement, we apply a liquid metal gelation technique to fabricate functional nanocomposites with an up to 57% increase in the specific yield strength without compromising the matrix alloy’s plasticity. MXenes largely retain their phase and 2D morphology after processing in liquid Mg–Li alloy at 700 °C. The 2D morphology enables formation of a strong semicoherent interface between MXene and metal matrix, manifested by biaxial strain of the MXene lattice inside the metal matrix. This work expands applications for MXenes and shows the potential for developing MXene-reinforced metal matrix composites for structural alloys and other emerging applications with metal–MXene interfaces, such as batteries and supercapacitors.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b06207</identifier><identifier>PMID: 31560851</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>colloidal gel ; lightweight alloys ; liquid metals ; MATERIALS SCIENCE ; MXenes ; van der Waals attraction</subject><ispartof>ACS nano, 2019-11, Vol.13 (11), p.12415-12424</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-ee6b540ac1821115b83b4fa62073d7c45486636aa8906d3f2e7088f3f67e03f43</citedby><cites>FETCH-LOGICAL-a401t-ee6b540ac1821115b83b4fa62073d7c45486636aa8906d3f2e7088f3f67e03f43</cites><orcidid>0000-0002-1955-253X ; 0000-0002-6414-8587 ; 0000-0002-8378-1994 ; 0000-0001-9423-4032 ; 0000-0002-6971-3792 ; 000000021955253X ; 0000000264148587 ; 0000000283781994 ; 0000000269713792 ; 0000000194234032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31560851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1615626$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamysbayev, Vladislav</creatorcontrib><creatorcontrib>James, Nicole M</creatorcontrib><creatorcontrib>Filatov, Alexander S</creatorcontrib><creatorcontrib>Srivastava, Vishwas</creatorcontrib><creatorcontrib>Anasori, Babak</creatorcontrib><creatorcontrib>Jaeger, Heinrich M</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Talapin, Dmitri V</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Colloidal Gelation in Liquid Metals Enables Functional Nanocomposites of 2D Metal Carbides (MXenes) and Lightweight Metals</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Nanomaterials dispersed in different media, such as liquids or polymers, generate a variety of functional composites with synergistic properties. In this work, we discuss liquid metals as the nanomaterials’ dispersion media. For example, 2D transition-metal carbides and nitrides (MXenes) can be efficiently dispersed in liquid Ga and lightweight alloys of Al, Mg, and Li. We show that the Lifshitz theory predicts strong van der Waals attraction between nanoscale objects interacting through liquid metals. However, a uniform distribution of MXenes in liquid metals can be achieved through colloidal gelation, where particles form self-supporting networks stable against macroscopic phase segregation. This network acts as a reinforcement boosting mechanical properties of the resulting metal–matrix composite. By choosing Mg–Li alloy as an example of ultralightweight metal matrix and Ti3C2T x MXene as a nanoscale reinforcement, we apply a liquid metal gelation technique to fabricate functional nanocomposites with an up to 57% increase in the specific yield strength without compromising the matrix alloy’s plasticity. MXenes largely retain their phase and 2D morphology after processing in liquid Mg–Li alloy at 700 °C. The 2D morphology enables formation of a strong semicoherent interface between MXene and metal matrix, manifested by biaxial strain of the MXene lattice inside the metal matrix. This work expands applications for MXenes and shows the potential for developing MXene-reinforced metal matrix composites for structural alloys and other emerging applications with metal–MXene interfaces, such as batteries and supercapacitors.</description><subject>colloidal gel</subject><subject>lightweight alloys</subject><subject>liquid metals</subject><subject>MATERIALS SCIENCE</subject><subject>MXenes</subject><subject>van der Waals attraction</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1PhDAQhhujcXX17M00njSG3ZZCgaPBz2RXL5p4a0oZtAbalUKM_npLwL156TQzz7ztzIvQCSULSkK6lMoZaewiKwgPSbKDDmjGeEBS_rq7vcd0hg6d-yAkTtKE76MZozEf8gfoJ7d1bXUpa3wHtey0NVgbvNKfvS7xGjpZO3xjZFGDw7e9UQPh4Uf_qrLNxjrd-YqtcHg94jiXbaFLnzxfv4IBd4GlKb3i23v3BcM5yR6hvcoHOJ7iHL3c3jzn98Hq6e4hv1oFMiK0CwB4EUdEKpqGlNK4SFkRVXIYl5WJiuIo5ZxxKdOM8JJVISQkTStW8QQIqyI2R2ejrnWdFk75D6t3ZY0B1QnK_SpC7qHzEdq09rMH14lGOwV1LQ3Y3okwzDIaRQkZ9JYjqlrrXAuV2LS6ke23oEQMrojJFTG54jtOJ_G-aKDc8n82eOByBHyn-LB961fs_pX7BQUKl1E</recordid><startdate>20191126</startdate><enddate>20191126</enddate><creator>Kamysbayev, Vladislav</creator><creator>James, Nicole M</creator><creator>Filatov, Alexander S</creator><creator>Srivastava, Vishwas</creator><creator>Anasori, Babak</creator><creator>Jaeger, Heinrich M</creator><creator>Gogotsi, Yury</creator><creator>Talapin, Dmitri V</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1955-253X</orcidid><orcidid>https://orcid.org/0000-0002-6414-8587</orcidid><orcidid>https://orcid.org/0000-0002-8378-1994</orcidid><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0002-6971-3792</orcidid><orcidid>https://orcid.org/000000021955253X</orcidid><orcidid>https://orcid.org/0000000264148587</orcidid><orcidid>https://orcid.org/0000000283781994</orcidid><orcidid>https://orcid.org/0000000269713792</orcidid><orcidid>https://orcid.org/0000000194234032</orcidid></search><sort><creationdate>20191126</creationdate><title>Colloidal Gelation in Liquid Metals Enables Functional Nanocomposites of 2D Metal Carbides (MXenes) and Lightweight Metals</title><author>Kamysbayev, Vladislav ; James, Nicole M ; Filatov, Alexander S ; Srivastava, Vishwas ; Anasori, Babak ; Jaeger, Heinrich M ; Gogotsi, Yury ; Talapin, Dmitri V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-ee6b540ac1821115b83b4fa62073d7c45486636aa8906d3f2e7088f3f67e03f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>colloidal gel</topic><topic>lightweight alloys</topic><topic>liquid metals</topic><topic>MATERIALS SCIENCE</topic><topic>MXenes</topic><topic>van der Waals attraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamysbayev, Vladislav</creatorcontrib><creatorcontrib>James, Nicole M</creatorcontrib><creatorcontrib>Filatov, Alexander S</creatorcontrib><creatorcontrib>Srivastava, Vishwas</creatorcontrib><creatorcontrib>Anasori, Babak</creatorcontrib><creatorcontrib>Jaeger, Heinrich M</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Talapin, Dmitri V</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamysbayev, Vladislav</au><au>James, Nicole M</au><au>Filatov, Alexander S</au><au>Srivastava, Vishwas</au><au>Anasori, Babak</au><au>Jaeger, Heinrich M</au><au>Gogotsi, Yury</au><au>Talapin, Dmitri V</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloidal Gelation in Liquid Metals Enables Functional Nanocomposites of 2D Metal Carbides (MXenes) and Lightweight Metals</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-11-26</date><risdate>2019</risdate><volume>13</volume><issue>11</issue><spage>12415</spage><epage>12424</epage><pages>12415-12424</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Nanomaterials dispersed in different media, such as liquids or polymers, generate a variety of functional composites with synergistic properties. In this work, we discuss liquid metals as the nanomaterials’ dispersion media. For example, 2D transition-metal carbides and nitrides (MXenes) can be efficiently dispersed in liquid Ga and lightweight alloys of Al, Mg, and Li. We show that the Lifshitz theory predicts strong van der Waals attraction between nanoscale objects interacting through liquid metals. However, a uniform distribution of MXenes in liquid metals can be achieved through colloidal gelation, where particles form self-supporting networks stable against macroscopic phase segregation. This network acts as a reinforcement boosting mechanical properties of the resulting metal–matrix composite. By choosing Mg–Li alloy as an example of ultralightweight metal matrix and Ti3C2T x MXene as a nanoscale reinforcement, we apply a liquid metal gelation technique to fabricate functional nanocomposites with an up to 57% increase in the specific yield strength without compromising the matrix alloy’s plasticity. MXenes largely retain their phase and 2D morphology after processing in liquid Mg–Li alloy at 700 °C. The 2D morphology enables formation of a strong semicoherent interface between MXene and metal matrix, manifested by biaxial strain of the MXene lattice inside the metal matrix. This work expands applications for MXenes and shows the potential for developing MXene-reinforced metal matrix composites for structural alloys and other emerging applications with metal–MXene interfaces, such as batteries and supercapacitors.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31560851</pmid><doi>10.1021/acsnano.9b06207</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1955-253X</orcidid><orcidid>https://orcid.org/0000-0002-6414-8587</orcidid><orcidid>https://orcid.org/0000-0002-8378-1994</orcidid><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0002-6971-3792</orcidid><orcidid>https://orcid.org/000000021955253X</orcidid><orcidid>https://orcid.org/0000000264148587</orcidid><orcidid>https://orcid.org/0000000283781994</orcidid><orcidid>https://orcid.org/0000000269713792</orcidid><orcidid>https://orcid.org/0000000194234032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2019-11, Vol.13 (11), p.12415-12424 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_osti_scitechconnect_1615626 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | colloidal gel lightweight alloys liquid metals MATERIALS SCIENCE MXenes van der Waals attraction |
title | Colloidal Gelation in Liquid Metals Enables Functional Nanocomposites of 2D Metal Carbides (MXenes) and Lightweight Metals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloidal%20Gelation%20in%20Liquid%20Metals%20Enables%20Functional%20Nanocomposites%20of%202D%20Metal%20Carbides%20(MXenes)%20and%20Lightweight%20Metals&rft.jtitle=ACS%20nano&rft.au=Kamysbayev,%20Vladislav&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-11-26&rft.volume=13&rft.issue=11&rft.spage=12415&rft.epage=12424&rft.pages=12415-12424&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b06207&rft_dat=%3Cproquest_osti_%3E2299144704%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a401t-ee6b540ac1821115b83b4fa62073d7c45486636aa8906d3f2e7088f3f67e03f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2299144704&rft_id=info:pmid/31560851&rfr_iscdi=true |