Loading…
Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4
We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic properties of MnBi2Te4, a material that was predicted to be an intrinsic antiferromagnetic (AFM) topological insulator. In striking contrast to earlier literature showing a fu...
Saved in:
Published in: | Physical review. B 2020-04, Vol.101 (16), p.1 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c260t-4eb890d2ebbc5116c4f5d8b2ae7a0c46a97c4180c387934e41dc20d0a81602153 |
---|---|
cites | |
container_end_page | |
container_issue | 16 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 101 |
creator | Swatek, Przemyslaw Wu, Yun Wang, Lin-Lin Lee, Kyungchan Schrunk, Benjamin Yan, Jiaqiang Kaminski, Adam |
description | We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic properties of MnBi2Te4, a material that was predicted to be an intrinsic antiferromagnetic (AFM) topological insulator. In striking contrast to earlier literature showing a full gap opening between two surface band manifolds on the (0001) surface, we observed a gapless Dirac surface state with a Dirac point sitting at EB=−280meV. Furthermore, our ARPES data revealed the existence of a second Dirac cone sitting closer to the Fermi level. Surprisingly, these surface states remain intact across the AFM transition. The presence of gapless Dirac states in this material may be caused by different ordering at the surface from the bulk or weaker magnetic coupling between the bulk and surface. Whereas the surface Dirac cones seem to be remarkably insensitive to the AFM ordering most likely due to weak coupling to magnetism, we did observe a splitting of the bulk band accompanying the AFM transition. With a moderately high ordering temperature and interesting gapless Dirac surface states, MnBi2Te4 provides a unique platform for studying the interplay between magnetic ordering and topology. |
doi_str_mv | 10.1103/PhysRevB.101.161109 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1616740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404075711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-4eb890d2ebbc5116c4f5d8b2ae7a0c46a97c4180c387934e41dc20d0a81602153</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOOZ-gS9Bnztv0jRtHt10U5goMp9Lenu7ZdRmNqngv7cw8ekcDh-Hw2HsWsBcCEjv3vY_4Z2-F3MBYi70mJkzNpFKm8QYbc7_fQaXbBbCAQCEBpODmbDt2h5bCoE_uN4iD0PfWCQeoo0UuOt43BO3XXQN9b3_tLuOokMe_dG3fufQtiMUhtZG3_OXbuHkltQVu2hsG2j2p1P2sXrcLp-Szev6eXm_SVBqiImiqjBQS6oqzITQqJqsLippKbeASluToxIFYFrkJlWkRI0SarDFOF-KLJ2ym1OvD9GVAV0k3KPvOsJYjk_oXMEI3Z6gY--_BgqxPPih78ZdpVSgIM9yIdJfWbhgmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404075711</pqid></control><display><type>article</type><title>Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Swatek, Przemyslaw ; Wu, Yun ; Wang, Lin-Lin ; Lee, Kyungchan ; Schrunk, Benjamin ; Yan, Jiaqiang ; Kaminski, Adam</creator><creatorcontrib>Swatek, Przemyslaw ; Wu, Yun ; Wang, Lin-Lin ; Lee, Kyungchan ; Schrunk, Benjamin ; Yan, Jiaqiang ; Kaminski, Adam ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Ames Lab., Ames, IA (United States) ; Energy Frontier Research Centers (EFRC) (United States). Center for the Advancement of Topological Semimetals (CATS)</creatorcontrib><description>We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic properties of MnBi2Te4, a material that was predicted to be an intrinsic antiferromagnetic (AFM) topological insulator. In striking contrast to earlier literature showing a full gap opening between two surface band manifolds on the (0001) surface, we observed a gapless Dirac surface state with a Dirac point sitting at EB=−280meV. Furthermore, our ARPES data revealed the existence of a second Dirac cone sitting closer to the Fermi level. Surprisingly, these surface states remain intact across the AFM transition. The presence of gapless Dirac states in this material may be caused by different ordering at the surface from the bulk or weaker magnetic coupling between the bulk and surface. Whereas the surface Dirac cones seem to be remarkably insensitive to the AFM ordering most likely due to weak coupling to magnetism, we did observe a splitting of the bulk band accompanying the AFM transition. With a moderately high ordering temperature and interesting gapless Dirac surface states, MnBi2Te4 provides a unique platform for studying the interplay between magnetic ordering and topology.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.161109</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Antiferromagnetism ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Cones ; Coupling ; density functional calculations ; Density functional theory ; electronic structure ; Fermi surfaces ; Magnetism ; Photoelectric emission ; Topological insulators ; topological materials</subject><ispartof>Physical review. B, 2020-04, Vol.101 (16), p.1</ispartof><rights>Copyright American Physical Society Apr 16, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-4eb890d2ebbc5116c4f5d8b2ae7a0c46a97c4180c387934e41dc20d0a81602153</citedby><orcidid>0000000234787484 ; 0000000166254706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1616740$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Swatek, Przemyslaw</creatorcontrib><creatorcontrib>Wu, Yun</creatorcontrib><creatorcontrib>Wang, Lin-Lin</creatorcontrib><creatorcontrib>Lee, Kyungchan</creatorcontrib><creatorcontrib>Schrunk, Benjamin</creatorcontrib><creatorcontrib>Yan, Jiaqiang</creatorcontrib><creatorcontrib>Kaminski, Adam</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for the Advancement of Topological Semimetals (CATS)</creatorcontrib><title>Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4</title><title>Physical review. B</title><description>We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic properties of MnBi2Te4, a material that was predicted to be an intrinsic antiferromagnetic (AFM) topological insulator. In striking contrast to earlier literature showing a full gap opening between two surface band manifolds on the (0001) surface, we observed a gapless Dirac surface state with a Dirac point sitting at EB=−280meV. Furthermore, our ARPES data revealed the existence of a second Dirac cone sitting closer to the Fermi level. Surprisingly, these surface states remain intact across the AFM transition. The presence of gapless Dirac states in this material may be caused by different ordering at the surface from the bulk or weaker magnetic coupling between the bulk and surface. Whereas the surface Dirac cones seem to be remarkably insensitive to the AFM ordering most likely due to weak coupling to magnetism, we did observe a splitting of the bulk band accompanying the AFM transition. With a moderately high ordering temperature and interesting gapless Dirac surface states, MnBi2Te4 provides a unique platform for studying the interplay between magnetic ordering and topology.</description><subject>Antiferromagnetism</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Cones</subject><subject>Coupling</subject><subject>density functional calculations</subject><subject>Density functional theory</subject><subject>electronic structure</subject><subject>Fermi surfaces</subject><subject>Magnetism</subject><subject>Photoelectric emission</subject><subject>Topological insulators</subject><subject>topological materials</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOOZ-gS9Bnztv0jRtHt10U5goMp9Lenu7ZdRmNqngv7cw8ekcDh-Hw2HsWsBcCEjv3vY_4Z2-F3MBYi70mJkzNpFKm8QYbc7_fQaXbBbCAQCEBpODmbDt2h5bCoE_uN4iD0PfWCQeoo0UuOt43BO3XXQN9b3_tLuOokMe_dG3fufQtiMUhtZG3_OXbuHkltQVu2hsG2j2p1P2sXrcLp-Szev6eXm_SVBqiImiqjBQS6oqzITQqJqsLippKbeASluToxIFYFrkJlWkRI0SarDFOF-KLJ2ym1OvD9GVAV0k3KPvOsJYjk_oXMEI3Z6gY--_BgqxPPih78ZdpVSgIM9yIdJfWbhgmA</recordid><startdate>20200416</startdate><enddate>20200416</enddate><creator>Swatek, Przemyslaw</creator><creator>Wu, Yun</creator><creator>Wang, Lin-Lin</creator><creator>Lee, Kyungchan</creator><creator>Schrunk, Benjamin</creator><creator>Yan, Jiaqiang</creator><creator>Kaminski, Adam</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000234787484</orcidid><orcidid>https://orcid.org/0000000166254706</orcidid></search><sort><creationdate>20200416</creationdate><title>Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4</title><author>Swatek, Przemyslaw ; Wu, Yun ; Wang, Lin-Lin ; Lee, Kyungchan ; Schrunk, Benjamin ; Yan, Jiaqiang ; Kaminski, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-4eb890d2ebbc5116c4f5d8b2ae7a0c46a97c4180c387934e41dc20d0a81602153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiferromagnetism</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Cones</topic><topic>Coupling</topic><topic>density functional calculations</topic><topic>Density functional theory</topic><topic>electronic structure</topic><topic>Fermi surfaces</topic><topic>Magnetism</topic><topic>Photoelectric emission</topic><topic>Topological insulators</topic><topic>topological materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swatek, Przemyslaw</creatorcontrib><creatorcontrib>Wu, Yun</creatorcontrib><creatorcontrib>Wang, Lin-Lin</creatorcontrib><creatorcontrib>Lee, Kyungchan</creatorcontrib><creatorcontrib>Schrunk, Benjamin</creatorcontrib><creatorcontrib>Yan, Jiaqiang</creatorcontrib><creatorcontrib>Kaminski, Adam</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for the Advancement of Topological Semimetals (CATS)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swatek, Przemyslaw</au><au>Wu, Yun</au><au>Wang, Lin-Lin</au><au>Lee, Kyungchan</au><au>Schrunk, Benjamin</au><au>Yan, Jiaqiang</au><au>Kaminski, Adam</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Ames Lab., Ames, IA (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for the Advancement of Topological Semimetals (CATS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4</atitle><jtitle>Physical review. B</jtitle><date>2020-04-16</date><risdate>2020</risdate><volume>101</volume><issue>16</issue><spage>1</spage><pages>1-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic properties of MnBi2Te4, a material that was predicted to be an intrinsic antiferromagnetic (AFM) topological insulator. In striking contrast to earlier literature showing a full gap opening between two surface band manifolds on the (0001) surface, we observed a gapless Dirac surface state with a Dirac point sitting at EB=−280meV. Furthermore, our ARPES data revealed the existence of a second Dirac cone sitting closer to the Fermi level. Surprisingly, these surface states remain intact across the AFM transition. The presence of gapless Dirac states in this material may be caused by different ordering at the surface from the bulk or weaker magnetic coupling between the bulk and surface. Whereas the surface Dirac cones seem to be remarkably insensitive to the AFM ordering most likely due to weak coupling to magnetism, we did observe a splitting of the bulk band accompanying the AFM transition. With a moderately high ordering temperature and interesting gapless Dirac surface states, MnBi2Te4 provides a unique platform for studying the interplay between magnetic ordering and topology.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.101.161109</doi><orcidid>https://orcid.org/0000000234787484</orcidid><orcidid>https://orcid.org/0000000166254706</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2020-04, Vol.101 (16), p.1 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1616740 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Antiferromagnetism CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Cones Coupling density functional calculations Density functional theory electronic structure Fermi surfaces Magnetism Photoelectric emission Topological insulators topological materials |
title | Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gapless%20Dirac%20surface%20states%20in%20the%20antiferromagnetic%20topological%20insulator%20MnBi2Te4&rft.jtitle=Physical%20review.%20B&rft.au=Swatek,%20Przemyslaw&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-04-16&rft.volume=101&rft.issue=16&rft.spage=1&rft.pages=1-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.161109&rft_dat=%3Cproquest_osti_%3E2404075711%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c260t-4eb890d2ebbc5116c4f5d8b2ae7a0c46a97c4180c387934e41dc20d0a81602153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404075711&rft_id=info:pmid/&rfr_iscdi=true |