Loading…

Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4

We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic properties of MnBi2Te4, a material that was predicted to be an intrinsic antiferromagnetic (AFM) topological insulator. In striking contrast to earlier literature showing a fu...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2020-04, Vol.101 (16), p.1
Main Authors: Swatek, Przemyslaw, Wu, Yun, Wang, Lin-Lin, Lee, Kyungchan, Schrunk, Benjamin, Yan, Jiaqiang, Kaminski, Adam
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c260t-4eb890d2ebbc5116c4f5d8b2ae7a0c46a97c4180c387934e41dc20d0a81602153
cites
container_end_page
container_issue 16
container_start_page 1
container_title Physical review. B
container_volume 101
creator Swatek, Przemyslaw
Wu, Yun
Wang, Lin-Lin
Lee, Kyungchan
Schrunk, Benjamin
Yan, Jiaqiang
Kaminski, Adam
description We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic properties of MnBi2Te4, a material that was predicted to be an intrinsic antiferromagnetic (AFM) topological insulator. In striking contrast to earlier literature showing a full gap opening between two surface band manifolds on the (0001) surface, we observed a gapless Dirac surface state with a Dirac point sitting at EB=−280meV. Furthermore, our ARPES data revealed the existence of a second Dirac cone sitting closer to the Fermi level. Surprisingly, these surface states remain intact across the AFM transition. The presence of gapless Dirac states in this material may be caused by different ordering at the surface from the bulk or weaker magnetic coupling between the bulk and surface. Whereas the surface Dirac cones seem to be remarkably insensitive to the AFM ordering most likely due to weak coupling to magnetism, we did observe a splitting of the bulk band accompanying the AFM transition. With a moderately high ordering temperature and interesting gapless Dirac surface states, MnBi2Te4 provides a unique platform for studying the interplay between magnetic ordering and topology.
doi_str_mv 10.1103/PhysRevB.101.161109
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1616740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404075711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-4eb890d2ebbc5116c4f5d8b2ae7a0c46a97c4180c387934e41dc20d0a81602153</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOOZ-gS9Bnztv0jRtHt10U5goMp9Lenu7ZdRmNqngv7cw8ekcDh-Hw2HsWsBcCEjv3vY_4Z2-F3MBYi70mJkzNpFKm8QYbc7_fQaXbBbCAQCEBpODmbDt2h5bCoE_uN4iD0PfWCQeoo0UuOt43BO3XXQN9b3_tLuOokMe_dG3fufQtiMUhtZG3_OXbuHkltQVu2hsG2j2p1P2sXrcLp-Szev6eXm_SVBqiImiqjBQS6oqzITQqJqsLippKbeASluToxIFYFrkJlWkRI0SarDFOF-KLJ2ym1OvD9GVAV0k3KPvOsJYjk_oXMEI3Z6gY--_BgqxPPih78ZdpVSgIM9yIdJfWbhgmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404075711</pqid></control><display><type>article</type><title>Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Swatek, Przemyslaw ; Wu, Yun ; Wang, Lin-Lin ; Lee, Kyungchan ; Schrunk, Benjamin ; Yan, Jiaqiang ; Kaminski, Adam</creator><creatorcontrib>Swatek, Przemyslaw ; Wu, Yun ; Wang, Lin-Lin ; Lee, Kyungchan ; Schrunk, Benjamin ; Yan, Jiaqiang ; Kaminski, Adam ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Ames Lab., Ames, IA (United States) ; Energy Frontier Research Centers (EFRC) (United States). Center for the Advancement of Topological Semimetals (CATS)</creatorcontrib><description>We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic properties of MnBi2Te4, a material that was predicted to be an intrinsic antiferromagnetic (AFM) topological insulator. In striking contrast to earlier literature showing a full gap opening between two surface band manifolds on the (0001) surface, we observed a gapless Dirac surface state with a Dirac point sitting at EB=−280meV. Furthermore, our ARPES data revealed the existence of a second Dirac cone sitting closer to the Fermi level. Surprisingly, these surface states remain intact across the AFM transition. The presence of gapless Dirac states in this material may be caused by different ordering at the surface from the bulk or weaker magnetic coupling between the bulk and surface. Whereas the surface Dirac cones seem to be remarkably insensitive to the AFM ordering most likely due to weak coupling to magnetism, we did observe a splitting of the bulk band accompanying the AFM transition. With a moderately high ordering temperature and interesting gapless Dirac surface states, MnBi2Te4 provides a unique platform for studying the interplay between magnetic ordering and topology.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.161109</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Antiferromagnetism ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Cones ; Coupling ; density functional calculations ; Density functional theory ; electronic structure ; Fermi surfaces ; Magnetism ; Photoelectric emission ; Topological insulators ; topological materials</subject><ispartof>Physical review. B, 2020-04, Vol.101 (16), p.1</ispartof><rights>Copyright American Physical Society Apr 16, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-4eb890d2ebbc5116c4f5d8b2ae7a0c46a97c4180c387934e41dc20d0a81602153</citedby><orcidid>0000000234787484 ; 0000000166254706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1616740$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Swatek, Przemyslaw</creatorcontrib><creatorcontrib>Wu, Yun</creatorcontrib><creatorcontrib>Wang, Lin-Lin</creatorcontrib><creatorcontrib>Lee, Kyungchan</creatorcontrib><creatorcontrib>Schrunk, Benjamin</creatorcontrib><creatorcontrib>Yan, Jiaqiang</creatorcontrib><creatorcontrib>Kaminski, Adam</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for the Advancement of Topological Semimetals (CATS)</creatorcontrib><title>Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4</title><title>Physical review. B</title><description>We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic properties of MnBi2Te4, a material that was predicted to be an intrinsic antiferromagnetic (AFM) topological insulator. In striking contrast to earlier literature showing a full gap opening between two surface band manifolds on the (0001) surface, we observed a gapless Dirac surface state with a Dirac point sitting at EB=−280meV. Furthermore, our ARPES data revealed the existence of a second Dirac cone sitting closer to the Fermi level. Surprisingly, these surface states remain intact across the AFM transition. The presence of gapless Dirac states in this material may be caused by different ordering at the surface from the bulk or weaker magnetic coupling between the bulk and surface. Whereas the surface Dirac cones seem to be remarkably insensitive to the AFM ordering most likely due to weak coupling to magnetism, we did observe a splitting of the bulk band accompanying the AFM transition. With a moderately high ordering temperature and interesting gapless Dirac surface states, MnBi2Te4 provides a unique platform for studying the interplay between magnetic ordering and topology.</description><subject>Antiferromagnetism</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Cones</subject><subject>Coupling</subject><subject>density functional calculations</subject><subject>Density functional theory</subject><subject>electronic structure</subject><subject>Fermi surfaces</subject><subject>Magnetism</subject><subject>Photoelectric emission</subject><subject>Topological insulators</subject><subject>topological materials</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOOZ-gS9Bnztv0jRtHt10U5goMp9Lenu7ZdRmNqngv7cw8ekcDh-Hw2HsWsBcCEjv3vY_4Z2-F3MBYi70mJkzNpFKm8QYbc7_fQaXbBbCAQCEBpODmbDt2h5bCoE_uN4iD0PfWCQeoo0UuOt43BO3XXQN9b3_tLuOokMe_dG3fufQtiMUhtZG3_OXbuHkltQVu2hsG2j2p1P2sXrcLp-Szev6eXm_SVBqiImiqjBQS6oqzITQqJqsLippKbeASluToxIFYFrkJlWkRI0SarDFOF-KLJ2ym1OvD9GVAV0k3KPvOsJYjk_oXMEI3Z6gY--_BgqxPPih78ZdpVSgIM9yIdJfWbhgmA</recordid><startdate>20200416</startdate><enddate>20200416</enddate><creator>Swatek, Przemyslaw</creator><creator>Wu, Yun</creator><creator>Wang, Lin-Lin</creator><creator>Lee, Kyungchan</creator><creator>Schrunk, Benjamin</creator><creator>Yan, Jiaqiang</creator><creator>Kaminski, Adam</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000234787484</orcidid><orcidid>https://orcid.org/0000000166254706</orcidid></search><sort><creationdate>20200416</creationdate><title>Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4</title><author>Swatek, Przemyslaw ; Wu, Yun ; Wang, Lin-Lin ; Lee, Kyungchan ; Schrunk, Benjamin ; Yan, Jiaqiang ; Kaminski, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-4eb890d2ebbc5116c4f5d8b2ae7a0c46a97c4180c387934e41dc20d0a81602153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiferromagnetism</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Cones</topic><topic>Coupling</topic><topic>density functional calculations</topic><topic>Density functional theory</topic><topic>electronic structure</topic><topic>Fermi surfaces</topic><topic>Magnetism</topic><topic>Photoelectric emission</topic><topic>Topological insulators</topic><topic>topological materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swatek, Przemyslaw</creatorcontrib><creatorcontrib>Wu, Yun</creatorcontrib><creatorcontrib>Wang, Lin-Lin</creatorcontrib><creatorcontrib>Lee, Kyungchan</creatorcontrib><creatorcontrib>Schrunk, Benjamin</creatorcontrib><creatorcontrib>Yan, Jiaqiang</creatorcontrib><creatorcontrib>Kaminski, Adam</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for the Advancement of Topological Semimetals (CATS)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swatek, Przemyslaw</au><au>Wu, Yun</au><au>Wang, Lin-Lin</au><au>Lee, Kyungchan</au><au>Schrunk, Benjamin</au><au>Yan, Jiaqiang</au><au>Kaminski, Adam</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Ames Lab., Ames, IA (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for the Advancement of Topological Semimetals (CATS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4</atitle><jtitle>Physical review. B</jtitle><date>2020-04-16</date><risdate>2020</risdate><volume>101</volume><issue>16</issue><spage>1</spage><pages>1-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic properties of MnBi2Te4, a material that was predicted to be an intrinsic antiferromagnetic (AFM) topological insulator. In striking contrast to earlier literature showing a full gap opening between two surface band manifolds on the (0001) surface, we observed a gapless Dirac surface state with a Dirac point sitting at EB=−280meV. Furthermore, our ARPES data revealed the existence of a second Dirac cone sitting closer to the Fermi level. Surprisingly, these surface states remain intact across the AFM transition. The presence of gapless Dirac states in this material may be caused by different ordering at the surface from the bulk or weaker magnetic coupling between the bulk and surface. Whereas the surface Dirac cones seem to be remarkably insensitive to the AFM ordering most likely due to weak coupling to magnetism, we did observe a splitting of the bulk band accompanying the AFM transition. With a moderately high ordering temperature and interesting gapless Dirac surface states, MnBi2Te4 provides a unique platform for studying the interplay between magnetic ordering and topology.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.101.161109</doi><orcidid>https://orcid.org/0000000234787484</orcidid><orcidid>https://orcid.org/0000000166254706</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-04, Vol.101 (16), p.1
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1616740
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Antiferromagnetism
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Cones
Coupling
density functional calculations
Density functional theory
electronic structure
Fermi surfaces
Magnetism
Photoelectric emission
Topological insulators
topological materials
title Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gapless%20Dirac%20surface%20states%20in%20the%20antiferromagnetic%20topological%20insulator%20MnBi2Te4&rft.jtitle=Physical%20review.%20B&rft.au=Swatek,%20Przemyslaw&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-04-16&rft.volume=101&rft.issue=16&rft.spage=1&rft.pages=1-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.161109&rft_dat=%3Cproquest_osti_%3E2404075711%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c260t-4eb890d2ebbc5116c4f5d8b2ae7a0c46a97c4180c387934e41dc20d0a81602153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404075711&rft_id=info:pmid/&rfr_iscdi=true