Loading…

Thermal relic abundances of particles with velocity-dependent interactions

We reexamine the evolution of thermal relic particle abundances for the case where the interaction rate depends on the particle velocities. For the case of Sommerfeld enhancement, we show that the standard analytic approximation, modified in a straightforward way, provides an estimate of the relic p...

Full description

Saved in:
Bibliographic Details
Published in:Physics letters. B 2010-04, Vol.687 (4-5), p.275-279
Main Authors: Dent, James B., Dutta, Sourish, Scherrer, Robert J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-7af6574c7507fdeec1128c85ba0332050db5e00136bc5f39d2149fcfb55b1cee3
cites cdi_FETCH-LOGICAL-c449t-7af6574c7507fdeec1128c85ba0332050db5e00136bc5f39d2149fcfb55b1cee3
container_end_page 279
container_issue 4-5
container_start_page 275
container_title Physics letters. B
container_volume 687
creator Dent, James B.
Dutta, Sourish
Scherrer, Robert J.
description We reexamine the evolution of thermal relic particle abundances for the case where the interaction rate depends on the particle velocities. For the case of Sommerfeld enhancement, we show that the standard analytic approximation, modified in a straightforward way, provides an estimate of the relic particle abundance that is accurate to within 10% (in comparison to
doi_str_mv 10.1016/j.physletb.2010.03.018
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1617416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0370269310003114</els_id><sourcerecordid>753744879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-7af6574c7507fdeec1128c85ba0332050db5e00136bc5f39d2149fcfb55b1cee3</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVpoG6SvxCWQulpXX1r99YS-kmgl_QstLMjLCNrt5Kc4n9fGae99jTM8MzMy0PIHaNbRpl-v9-uu1OJWKctp21IxZay4QXZsMGInkupXpINFYb2XI_iFXldyp5SyhTVG_L9cYf54GKXMQbo3HRMs0uApVt8t7pcA8TW_A511z1hXCDUUz_jimnGVLuQKmYHNSyp3JAr72LB2-d6TX5-_vR4_7V_-PHl2_3Hhx6kHGtvnNfKSDCKGj8jAmN8gEFNjgrBqaLzpLDFE3oC5cU4cyZHD35SamKAKK7Jm8vdpdRgS0uEsIMlJYRqmWZGMt2gdxdozcuvI5ZqD6EAxugSLsdijRJGysGMjdQXEvJSSkZv1xwOLp8so_Ys2O7tX8H2LNhSYZvgtvj2-YUr4KLPzVso_7Y510JJxhv34cJhk_IUMJ8zY3M8h3yOPC_hf6_-AIKWlXk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753744879</pqid></control><display><type>article</type><title>Thermal relic abundances of particles with velocity-dependent interactions</title><source>ScienceDirect Freedom Collection 2022-2024</source><source>Elsevier ScienceDirect Journals</source><creator>Dent, James B. ; Dutta, Sourish ; Scherrer, Robert J.</creator><creatorcontrib>Dent, James B. ; Dutta, Sourish ; Scherrer, Robert J.</creatorcontrib><description>We reexamine the evolution of thermal relic particle abundances for the case where the interaction rate depends on the particle velocities. For the case of Sommerfeld enhancement, we show that the standard analytic approximation, modified in a straightforward way, provides an estimate of the relic particle abundance that is accurate to within 10% (in comparison to &lt;1% error for the non-Sommerfeld-enhanced case). We examine the effect of kinetic decoupling on relic particle abundances when the interaction rate depends on the velocity. For the case of pure p-wave annihilation, the effect of kinetic decoupling is an increase in the relic abundance, but the effect is negligible when the kinetic decoupling temperature is much less than the chemical decoupling temperature. For the case of Sommerfeld-enhanced s-wave annihilations, after kinetic decoupling occurs, annihilations continue to change the particle abundance down to arbitrarily low temperatures, until either matter domination begins or the Sommerfeld effect cuts off. We derive analytic approximations to give the final relic particle abundances for both of these cases.</description><identifier>ISSN: 0370-2693</identifier><identifier>EISSN: 1873-2445</identifier><identifier>DOI: 10.1016/j.physletb.2010.03.018</identifier><identifier>CODEN: PYLBAJ</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Abundance ; Approximation ; Cosmology ; Cut off ; Dark matter ; Decoupling ; Early universe ; Elementary particles ; Error analysis ; Evolution ; Exact sciences and technology ; Mathematical analysis ; Nuclear physics ; Physics ; Sommerfeld enchancement ; The physics of elementary particles and fields ; Thermal relic abundances ; Velocity-dependent interactions</subject><ispartof>Physics letters. B, 2010-04, Vol.687 (4-5), p.275-279</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-7af6574c7507fdeec1128c85ba0332050db5e00136bc5f39d2149fcfb55b1cee3</citedby><cites>FETCH-LOGICAL-c449t-7af6574c7507fdeec1128c85ba0332050db5e00136bc5f39d2149fcfb55b1cee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0370269310003114$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22635412$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1617416$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dent, James B.</creatorcontrib><creatorcontrib>Dutta, Sourish</creatorcontrib><creatorcontrib>Scherrer, Robert J.</creatorcontrib><title>Thermal relic abundances of particles with velocity-dependent interactions</title><title>Physics letters. B</title><description>We reexamine the evolution of thermal relic particle abundances for the case where the interaction rate depends on the particle velocities. For the case of Sommerfeld enhancement, we show that the standard analytic approximation, modified in a straightforward way, provides an estimate of the relic particle abundance that is accurate to within 10% (in comparison to &lt;1% error for the non-Sommerfeld-enhanced case). We examine the effect of kinetic decoupling on relic particle abundances when the interaction rate depends on the velocity. For the case of pure p-wave annihilation, the effect of kinetic decoupling is an increase in the relic abundance, but the effect is negligible when the kinetic decoupling temperature is much less than the chemical decoupling temperature. For the case of Sommerfeld-enhanced s-wave annihilations, after kinetic decoupling occurs, annihilations continue to change the particle abundance down to arbitrarily low temperatures, until either matter domination begins or the Sommerfeld effect cuts off. We derive analytic approximations to give the final relic particle abundances for both of these cases.</description><subject>Abundance</subject><subject>Approximation</subject><subject>Cosmology</subject><subject>Cut off</subject><subject>Dark matter</subject><subject>Decoupling</subject><subject>Early universe</subject><subject>Elementary particles</subject><subject>Error analysis</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Nuclear physics</subject><subject>Physics</subject><subject>Sommerfeld enchancement</subject><subject>The physics of elementary particles and fields</subject><subject>Thermal relic abundances</subject><subject>Velocity-dependent interactions</subject><issn>0370-2693</issn><issn>1873-2445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVpoG6SvxCWQulpXX1r99YS-kmgl_QstLMjLCNrt5Kc4n9fGae99jTM8MzMy0PIHaNbRpl-v9-uu1OJWKctp21IxZay4QXZsMGInkupXpINFYb2XI_iFXldyp5SyhTVG_L9cYf54GKXMQbo3HRMs0uApVt8t7pcA8TW_A511z1hXCDUUz_jimnGVLuQKmYHNSyp3JAr72LB2-d6TX5-_vR4_7V_-PHl2_3Hhx6kHGtvnNfKSDCKGj8jAmN8gEFNjgrBqaLzpLDFE3oC5cU4cyZHD35SamKAKK7Jm8vdpdRgS0uEsIMlJYRqmWZGMt2gdxdozcuvI5ZqD6EAxugSLsdijRJGysGMjdQXEvJSSkZv1xwOLp8so_Ys2O7tX8H2LNhSYZvgtvj2-YUr4KLPzVso_7Y510JJxhv34cJhk_IUMJ8zY3M8h3yOPC_hf6_-AIKWlXk</recordid><startdate>20100419</startdate><enddate>20100419</enddate><creator>Dent, James B.</creator><creator>Dutta, Sourish</creator><creator>Scherrer, Robert J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20100419</creationdate><title>Thermal relic abundances of particles with velocity-dependent interactions</title><author>Dent, James B. ; Dutta, Sourish ; Scherrer, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-7af6574c7507fdeec1128c85ba0332050db5e00136bc5f39d2149fcfb55b1cee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Abundance</topic><topic>Approximation</topic><topic>Cosmology</topic><topic>Cut off</topic><topic>Dark matter</topic><topic>Decoupling</topic><topic>Early universe</topic><topic>Elementary particles</topic><topic>Error analysis</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Nuclear physics</topic><topic>Physics</topic><topic>Sommerfeld enchancement</topic><topic>The physics of elementary particles and fields</topic><topic>Thermal relic abundances</topic><topic>Velocity-dependent interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dent, James B.</creatorcontrib><creatorcontrib>Dutta, Sourish</creatorcontrib><creatorcontrib>Scherrer, Robert J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics letters. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dent, James B.</au><au>Dutta, Sourish</au><au>Scherrer, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal relic abundances of particles with velocity-dependent interactions</atitle><jtitle>Physics letters. B</jtitle><date>2010-04-19</date><risdate>2010</risdate><volume>687</volume><issue>4-5</issue><spage>275</spage><epage>279</epage><pages>275-279</pages><issn>0370-2693</issn><eissn>1873-2445</eissn><coden>PYLBAJ</coden><abstract>We reexamine the evolution of thermal relic particle abundances for the case where the interaction rate depends on the particle velocities. For the case of Sommerfeld enhancement, we show that the standard analytic approximation, modified in a straightforward way, provides an estimate of the relic particle abundance that is accurate to within 10% (in comparison to &lt;1% error for the non-Sommerfeld-enhanced case). We examine the effect of kinetic decoupling on relic particle abundances when the interaction rate depends on the velocity. For the case of pure p-wave annihilation, the effect of kinetic decoupling is an increase in the relic abundance, but the effect is negligible when the kinetic decoupling temperature is much less than the chemical decoupling temperature. For the case of Sommerfeld-enhanced s-wave annihilations, after kinetic decoupling occurs, annihilations continue to change the particle abundance down to arbitrarily low temperatures, until either matter domination begins or the Sommerfeld effect cuts off. We derive analytic approximations to give the final relic particle abundances for both of these cases.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physletb.2010.03.018</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0370-2693
ispartof Physics letters. B, 2010-04, Vol.687 (4-5), p.275-279
issn 0370-2693
1873-2445
language eng
recordid cdi_osti_scitechconnect_1617416
source ScienceDirect Freedom Collection 2022-2024; Elsevier ScienceDirect Journals
subjects Abundance
Approximation
Cosmology
Cut off
Dark matter
Decoupling
Early universe
Elementary particles
Error analysis
Evolution
Exact sciences and technology
Mathematical analysis
Nuclear physics
Physics
Sommerfeld enchancement
The physics of elementary particles and fields
Thermal relic abundances
Velocity-dependent interactions
title Thermal relic abundances of particles with velocity-dependent interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A28%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20relic%20abundances%20of%20particles%20with%20velocity-dependent%20interactions&rft.jtitle=Physics%20letters.%20B&rft.au=Dent,%20James%20B.&rft.date=2010-04-19&rft.volume=687&rft.issue=4-5&rft.spage=275&rft.epage=279&rft.pages=275-279&rft.issn=0370-2693&rft.eissn=1873-2445&rft.coden=PYLBAJ&rft_id=info:doi/10.1016/j.physletb.2010.03.018&rft_dat=%3Cproquest_osti_%3E753744879%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-7af6574c7507fdeec1128c85ba0332050db5e00136bc5f39d2149fcfb55b1cee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753744879&rft_id=info:pmid/&rfr_iscdi=true