Loading…
Design and synthesis of multigrain nanocrystals via geometric misfit strain
The impact of topological defects associated with grain boundaries (GB defects) on the electrical, optical, magnetic, mechanical and chemical properties of nanocrystalline materials is well known. Yet, elucidating this influence experimentally is difficult because grains typically exhibit a large ra...
Saved in:
Published in: | Nature (London) 2020-01, Vol.577 (7790) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 7790 |
container_start_page | |
container_title | Nature (London) |
container_volume | 577 |
creator | Oh, Myoung Hwan Cho, Min Gee Chung, Dong Young Park, Inchul Kwon, Youngwook Paul Ophus, Colin Kim, Dokyoon Kim, Min Gyu Jeong, Beomgyun Gu, X. Wendy Jo, Jinwoung Yoo, Ji Mun Hong, Jaeyoung McMains, Sara Kang, Kisuk Sung, Yung-Eun Alivisatos, A Paul Hyeon, Taeghwan |
description | The impact of topological defects associated with grain boundaries (GB defects) on the electrical, optical, magnetic, mechanical and chemical properties of nanocrystalline materials is well known. Yet, elucidating this influence experimentally is difficult because grains typically exhibit a large range of sizes, shapes and random relative orientations. Here we demonstrate that precise control of the heteroepitaxy of colloidal polyhedral nanocrystals enables ordered grain growth and can thereby produce material samples with uniform GB defects. We highlight our approach with a multigrain nanocrystal comprising a Co3O4 nanocube core that carries a Mn3O4 shell on each facet. The individual shells are symmetry-related interconnected grains, and the large geometric misfit between adjacent tetragonal Mn3O4 grains results in tilt boundaries at the sharp edges of the Co3O4 nanocube core that join via disclinations. We identify four design principles that govern the production of these highly ordered multigrain nanostructures. First, the shape of the substrate nanocrystal must guide the crystallographic orientation of the overgrowth phase. Second, the size of the substrate must be smaller than the characteristic distance between the dislocations. Third, the incompatible symmetry between the overgrowth phase and the substrate increases the geometric misfit strain between the grains. Fourth, for GB formation under near-equilibrium conditions, the surface energy of the shell needs to be balanced by the increasing elastic energy through ligand passivation. With these principles, we can produce a range of multigrain nanocrystals containing distinct GB defects. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1619158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1619158</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_16191583</originalsourceid><addsrcrecordid>eNqNyssKwjAQQNEgCtbHPwzuC4lt07j2geDWfQkxbUfaBDqj0L-3gh_g6nLhzESi8lKnuTblXCRS7k0qTaaXYkX0lFIWqswTcTt5wiaADQ-gMXA7LUGsoX91jM1gMUCwIbphJLYdwRstND72ngd00CPVyED8hRuxqCfit7-uxe5yvh-vaSTGihyyd62LIXjHldLqoAqT_YU-CNI_Tg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design and synthesis of multigrain nanocrystals via geometric misfit strain</title><source>Nature</source><creator>Oh, Myoung Hwan ; Cho, Min Gee ; Chung, Dong Young ; Park, Inchul ; Kwon, Youngwook Paul ; Ophus, Colin ; Kim, Dokyoon ; Kim, Min Gyu ; Jeong, Beomgyun ; Gu, X. Wendy ; Jo, Jinwoung ; Yoo, Ji Mun ; Hong, Jaeyoung ; McMains, Sara ; Kang, Kisuk ; Sung, Yung-Eun ; Alivisatos, A Paul ; Hyeon, Taeghwan</creator><creatorcontrib>Oh, Myoung Hwan ; Cho, Min Gee ; Chung, Dong Young ; Park, Inchul ; Kwon, Youngwook Paul ; Ophus, Colin ; Kim, Dokyoon ; Kim, Min Gyu ; Jeong, Beomgyun ; Gu, X. Wendy ; Jo, Jinwoung ; Yoo, Ji Mun ; Hong, Jaeyoung ; McMains, Sara ; Kang, Kisuk ; Sung, Yung-Eun ; Alivisatos, A Paul ; Hyeon, Taeghwan ; Univ. of California, Berkeley, CA (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The impact of topological defects associated with grain boundaries (GB defects) on the electrical, optical, magnetic, mechanical and chemical properties of nanocrystalline materials is well known. Yet, elucidating this influence experimentally is difficult because grains typically exhibit a large range of sizes, shapes and random relative orientations. Here we demonstrate that precise control of the heteroepitaxy of colloidal polyhedral nanocrystals enables ordered grain growth and can thereby produce material samples with uniform GB defects. We highlight our approach with a multigrain nanocrystal comprising a Co3O4 nanocube core that carries a Mn3O4 shell on each facet. The individual shells are symmetry-related interconnected grains, and the large geometric misfit between adjacent tetragonal Mn3O4 grains results in tilt boundaries at the sharp edges of the Co3O4 nanocube core that join via disclinations. We identify four design principles that govern the production of these highly ordered multigrain nanostructures. First, the shape of the substrate nanocrystal must guide the crystallographic orientation of the overgrowth phase. Second, the size of the substrate must be smaller than the characteristic distance between the dislocations. Third, the incompatible symmetry between the overgrowth phase and the substrate increases the geometric misfit strain between the grains. Fourth, for GB formation under near-equilibrium conditions, the surface energy of the shell needs to be balanced by the increasing elastic energy through ligand passivation. With these principles, we can produce a range of multigrain nanocrystals containing distinct GB defects.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><language>eng</language><publisher>United States: Nature Publishing Group</publisher><subject>MATERIALS SCIENCE</subject><ispartof>Nature (London), 2020-01, Vol.577 (7790)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1619158$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Myoung Hwan</creatorcontrib><creatorcontrib>Cho, Min Gee</creatorcontrib><creatorcontrib>Chung, Dong Young</creatorcontrib><creatorcontrib>Park, Inchul</creatorcontrib><creatorcontrib>Kwon, Youngwook Paul</creatorcontrib><creatorcontrib>Ophus, Colin</creatorcontrib><creatorcontrib>Kim, Dokyoon</creatorcontrib><creatorcontrib>Kim, Min Gyu</creatorcontrib><creatorcontrib>Jeong, Beomgyun</creatorcontrib><creatorcontrib>Gu, X. Wendy</creatorcontrib><creatorcontrib>Jo, Jinwoung</creatorcontrib><creatorcontrib>Yoo, Ji Mun</creatorcontrib><creatorcontrib>Hong, Jaeyoung</creatorcontrib><creatorcontrib>McMains, Sara</creatorcontrib><creatorcontrib>Kang, Kisuk</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Alivisatos, A Paul</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><creatorcontrib>Univ. of California, Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Design and synthesis of multigrain nanocrystals via geometric misfit strain</title><title>Nature (London)</title><description>The impact of topological defects associated with grain boundaries (GB defects) on the electrical, optical, magnetic, mechanical and chemical properties of nanocrystalline materials is well known. Yet, elucidating this influence experimentally is difficult because grains typically exhibit a large range of sizes, shapes and random relative orientations. Here we demonstrate that precise control of the heteroepitaxy of colloidal polyhedral nanocrystals enables ordered grain growth and can thereby produce material samples with uniform GB defects. We highlight our approach with a multigrain nanocrystal comprising a Co3O4 nanocube core that carries a Mn3O4 shell on each facet. The individual shells are symmetry-related interconnected grains, and the large geometric misfit between adjacent tetragonal Mn3O4 grains results in tilt boundaries at the sharp edges of the Co3O4 nanocube core that join via disclinations. We identify four design principles that govern the production of these highly ordered multigrain nanostructures. First, the shape of the substrate nanocrystal must guide the crystallographic orientation of the overgrowth phase. Second, the size of the substrate must be smaller than the characteristic distance between the dislocations. Third, the incompatible symmetry between the overgrowth phase and the substrate increases the geometric misfit strain between the grains. Fourth, for GB formation under near-equilibrium conditions, the surface energy of the shell needs to be balanced by the increasing elastic energy through ligand passivation. With these principles, we can produce a range of multigrain nanocrystals containing distinct GB defects.</description><subject>MATERIALS SCIENCE</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNyssKwjAQQNEgCtbHPwzuC4lt07j2geDWfQkxbUfaBDqj0L-3gh_g6nLhzESi8lKnuTblXCRS7k0qTaaXYkX0lFIWqswTcTt5wiaADQ-gMXA7LUGsoX91jM1gMUCwIbphJLYdwRstND72ngd00CPVyED8hRuxqCfit7-uxe5yvh-vaSTGihyyd62LIXjHldLqoAqT_YU-CNI_Tg</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Oh, Myoung Hwan</creator><creator>Cho, Min Gee</creator><creator>Chung, Dong Young</creator><creator>Park, Inchul</creator><creator>Kwon, Youngwook Paul</creator><creator>Ophus, Colin</creator><creator>Kim, Dokyoon</creator><creator>Kim, Min Gyu</creator><creator>Jeong, Beomgyun</creator><creator>Gu, X. Wendy</creator><creator>Jo, Jinwoung</creator><creator>Yoo, Ji Mun</creator><creator>Hong, Jaeyoung</creator><creator>McMains, Sara</creator><creator>Kang, Kisuk</creator><creator>Sung, Yung-Eun</creator><creator>Alivisatos, A Paul</creator><creator>Hyeon, Taeghwan</creator><general>Nature Publishing Group</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200115</creationdate><title>Design and synthesis of multigrain nanocrystals via geometric misfit strain</title><author>Oh, Myoung Hwan ; Cho, Min Gee ; Chung, Dong Young ; Park, Inchul ; Kwon, Youngwook Paul ; Ophus, Colin ; Kim, Dokyoon ; Kim, Min Gyu ; Jeong, Beomgyun ; Gu, X. Wendy ; Jo, Jinwoung ; Yoo, Ji Mun ; Hong, Jaeyoung ; McMains, Sara ; Kang, Kisuk ; Sung, Yung-Eun ; Alivisatos, A Paul ; Hyeon, Taeghwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_16191583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Myoung Hwan</creatorcontrib><creatorcontrib>Cho, Min Gee</creatorcontrib><creatorcontrib>Chung, Dong Young</creatorcontrib><creatorcontrib>Park, Inchul</creatorcontrib><creatorcontrib>Kwon, Youngwook Paul</creatorcontrib><creatorcontrib>Ophus, Colin</creatorcontrib><creatorcontrib>Kim, Dokyoon</creatorcontrib><creatorcontrib>Kim, Min Gyu</creatorcontrib><creatorcontrib>Jeong, Beomgyun</creatorcontrib><creatorcontrib>Gu, X. Wendy</creatorcontrib><creatorcontrib>Jo, Jinwoung</creatorcontrib><creatorcontrib>Yoo, Ji Mun</creatorcontrib><creatorcontrib>Hong, Jaeyoung</creatorcontrib><creatorcontrib>McMains, Sara</creatorcontrib><creatorcontrib>Kang, Kisuk</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Alivisatos, A Paul</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><creatorcontrib>Univ. of California, Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Myoung Hwan</au><au>Cho, Min Gee</au><au>Chung, Dong Young</au><au>Park, Inchul</au><au>Kwon, Youngwook Paul</au><au>Ophus, Colin</au><au>Kim, Dokyoon</au><au>Kim, Min Gyu</au><au>Jeong, Beomgyun</au><au>Gu, X. Wendy</au><au>Jo, Jinwoung</au><au>Yoo, Ji Mun</au><au>Hong, Jaeyoung</au><au>McMains, Sara</au><au>Kang, Kisuk</au><au>Sung, Yung-Eun</au><au>Alivisatos, A Paul</au><au>Hyeon, Taeghwan</au><aucorp>Univ. of California, Berkeley, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and synthesis of multigrain nanocrystals via geometric misfit strain</atitle><jtitle>Nature (London)</jtitle><date>2020-01-15</date><risdate>2020</risdate><volume>577</volume><issue>7790</issue><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The impact of topological defects associated with grain boundaries (GB defects) on the electrical, optical, magnetic, mechanical and chemical properties of nanocrystalline materials is well known. Yet, elucidating this influence experimentally is difficult because grains typically exhibit a large range of sizes, shapes and random relative orientations. Here we demonstrate that precise control of the heteroepitaxy of colloidal polyhedral nanocrystals enables ordered grain growth and can thereby produce material samples with uniform GB defects. We highlight our approach with a multigrain nanocrystal comprising a Co3O4 nanocube core that carries a Mn3O4 shell on each facet. The individual shells are symmetry-related interconnected grains, and the large geometric misfit between adjacent tetragonal Mn3O4 grains results in tilt boundaries at the sharp edges of the Co3O4 nanocube core that join via disclinations. We identify four design principles that govern the production of these highly ordered multigrain nanostructures. First, the shape of the substrate nanocrystal must guide the crystallographic orientation of the overgrowth phase. Second, the size of the substrate must be smaller than the characteristic distance between the dislocations. Third, the incompatible symmetry between the overgrowth phase and the substrate increases the geometric misfit strain between the grains. Fourth, for GB formation under near-equilibrium conditions, the surface energy of the shell needs to be balanced by the increasing elastic energy through ligand passivation. With these principles, we can produce a range of multigrain nanocrystals containing distinct GB defects.</abstract><cop>United States</cop><pub>Nature Publishing Group</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-01, Vol.577 (7790) |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_1619158 |
source | Nature |
subjects | MATERIALS SCIENCE |
title | Design and synthesis of multigrain nanocrystals via geometric misfit strain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20synthesis%20of%20multigrain%20nanocrystals%20via%20geometric%20misfit%20strain&rft.jtitle=Nature%20(London)&rft.au=Oh,%20Myoung%20Hwan&rft.aucorp=Univ.%20of%20California,%20Berkeley,%20CA%20(United%20States)&rft.date=2020-01-15&rft.volume=577&rft.issue=7790&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/&rft_dat=%3Costi%3E1619158%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_16191583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |