Loading…

Design and synthesis of multigrain nanocrystals via geometric misfit strain

The impact of topological defects associated with grain boundaries (GB defects) on the electrical, optical, magnetic, mechanical and chemical properties of nanocrystalline materials is well known. Yet, elucidating this influence experimentally is difficult because grains typically exhibit a large ra...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2020-01, Vol.577 (7790)
Main Authors: Oh, Myoung Hwan, Cho, Min Gee, Chung, Dong Young, Park, Inchul, Kwon, Youngwook Paul, Ophus, Colin, Kim, Dokyoon, Kim, Min Gyu, Jeong, Beomgyun, Gu, X. Wendy, Jo, Jinwoung, Yoo, Ji Mun, Hong, Jaeyoung, McMains, Sara, Kang, Kisuk, Sung, Yung-Eun, Alivisatos, A Paul, Hyeon, Taeghwan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 7790
container_start_page
container_title Nature (London)
container_volume 577
creator Oh, Myoung Hwan
Cho, Min Gee
Chung, Dong Young
Park, Inchul
Kwon, Youngwook Paul
Ophus, Colin
Kim, Dokyoon
Kim, Min Gyu
Jeong, Beomgyun
Gu, X. Wendy
Jo, Jinwoung
Yoo, Ji Mun
Hong, Jaeyoung
McMains, Sara
Kang, Kisuk
Sung, Yung-Eun
Alivisatos, A Paul
Hyeon, Taeghwan
description The impact of topological defects associated with grain boundaries (GB defects) on the electrical, optical, magnetic, mechanical and chemical properties of nanocrystalline materials is well known. Yet, elucidating this influence experimentally is difficult because grains typically exhibit a large range of sizes, shapes and random relative orientations. Here we demonstrate that precise control of the heteroepitaxy of colloidal polyhedral nanocrystals enables ordered grain growth and can thereby produce material samples with uniform GB defects. We highlight our approach with a multigrain nanocrystal comprising a Co3O4 nanocube core that carries a Mn3O4 shell on each facet. The individual shells are symmetry-related interconnected grains, and the large geometric misfit between adjacent tetragonal Mn3O4 grains results in tilt boundaries at the sharp edges of the Co3O4 nanocube core that join via disclinations. We identify four design principles that govern the production of these highly ordered multigrain nanostructures. First, the shape of the substrate nanocrystal must guide the crystallographic orientation of the overgrowth phase. Second, the size of the substrate must be smaller than the characteristic distance between the dislocations. Third, the incompatible symmetry between the overgrowth phase and the substrate increases the geometric misfit strain between the grains. Fourth, for GB formation under near-equilibrium conditions, the surface energy of the shell needs to be balanced by the increasing elastic energy through ligand passivation. With these principles, we can produce a range of multigrain nanocrystals containing distinct GB defects.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1619158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1619158</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_16191583</originalsourceid><addsrcrecordid>eNqNyssKwjAQQNEgCtbHPwzuC4lt07j2geDWfQkxbUfaBDqj0L-3gh_g6nLhzESi8lKnuTblXCRS7k0qTaaXYkX0lFIWqswTcTt5wiaADQ-gMXA7LUGsoX91jM1gMUCwIbphJLYdwRstND72ngd00CPVyED8hRuxqCfit7-uxe5yvh-vaSTGihyyd62LIXjHldLqoAqT_YU-CNI_Tg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design and synthesis of multigrain nanocrystals via geometric misfit strain</title><source>Nature</source><creator>Oh, Myoung Hwan ; Cho, Min Gee ; Chung, Dong Young ; Park, Inchul ; Kwon, Youngwook Paul ; Ophus, Colin ; Kim, Dokyoon ; Kim, Min Gyu ; Jeong, Beomgyun ; Gu, X. Wendy ; Jo, Jinwoung ; Yoo, Ji Mun ; Hong, Jaeyoung ; McMains, Sara ; Kang, Kisuk ; Sung, Yung-Eun ; Alivisatos, A Paul ; Hyeon, Taeghwan</creator><creatorcontrib>Oh, Myoung Hwan ; Cho, Min Gee ; Chung, Dong Young ; Park, Inchul ; Kwon, Youngwook Paul ; Ophus, Colin ; Kim, Dokyoon ; Kim, Min Gyu ; Jeong, Beomgyun ; Gu, X. Wendy ; Jo, Jinwoung ; Yoo, Ji Mun ; Hong, Jaeyoung ; McMains, Sara ; Kang, Kisuk ; Sung, Yung-Eun ; Alivisatos, A Paul ; Hyeon, Taeghwan ; Univ. of California, Berkeley, CA (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The impact of topological defects associated with grain boundaries (GB defects) on the electrical, optical, magnetic, mechanical and chemical properties of nanocrystalline materials is well known. Yet, elucidating this influence experimentally is difficult because grains typically exhibit a large range of sizes, shapes and random relative orientations. Here we demonstrate that precise control of the heteroepitaxy of colloidal polyhedral nanocrystals enables ordered grain growth and can thereby produce material samples with uniform GB defects. We highlight our approach with a multigrain nanocrystal comprising a Co3O4 nanocube core that carries a Mn3O4 shell on each facet. The individual shells are symmetry-related interconnected grains, and the large geometric misfit between adjacent tetragonal Mn3O4 grains results in tilt boundaries at the sharp edges of the Co3O4 nanocube core that join via disclinations. We identify four design principles that govern the production of these highly ordered multigrain nanostructures. First, the shape of the substrate nanocrystal must guide the crystallographic orientation of the overgrowth phase. Second, the size of the substrate must be smaller than the characteristic distance between the dislocations. Third, the incompatible symmetry between the overgrowth phase and the substrate increases the geometric misfit strain between the grains. Fourth, for GB formation under near-equilibrium conditions, the surface energy of the shell needs to be balanced by the increasing elastic energy through ligand passivation. With these principles, we can produce a range of multigrain nanocrystals containing distinct GB defects.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><language>eng</language><publisher>United States: Nature Publishing Group</publisher><subject>MATERIALS SCIENCE</subject><ispartof>Nature (London), 2020-01, Vol.577 (7790)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1619158$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Myoung Hwan</creatorcontrib><creatorcontrib>Cho, Min Gee</creatorcontrib><creatorcontrib>Chung, Dong Young</creatorcontrib><creatorcontrib>Park, Inchul</creatorcontrib><creatorcontrib>Kwon, Youngwook Paul</creatorcontrib><creatorcontrib>Ophus, Colin</creatorcontrib><creatorcontrib>Kim, Dokyoon</creatorcontrib><creatorcontrib>Kim, Min Gyu</creatorcontrib><creatorcontrib>Jeong, Beomgyun</creatorcontrib><creatorcontrib>Gu, X. Wendy</creatorcontrib><creatorcontrib>Jo, Jinwoung</creatorcontrib><creatorcontrib>Yoo, Ji Mun</creatorcontrib><creatorcontrib>Hong, Jaeyoung</creatorcontrib><creatorcontrib>McMains, Sara</creatorcontrib><creatorcontrib>Kang, Kisuk</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Alivisatos, A Paul</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><creatorcontrib>Univ. of California, Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Design and synthesis of multigrain nanocrystals via geometric misfit strain</title><title>Nature (London)</title><description>The impact of topological defects associated with grain boundaries (GB defects) on the electrical, optical, magnetic, mechanical and chemical properties of nanocrystalline materials is well known. Yet, elucidating this influence experimentally is difficult because grains typically exhibit a large range of sizes, shapes and random relative orientations. Here we demonstrate that precise control of the heteroepitaxy of colloidal polyhedral nanocrystals enables ordered grain growth and can thereby produce material samples with uniform GB defects. We highlight our approach with a multigrain nanocrystal comprising a Co3O4 nanocube core that carries a Mn3O4 shell on each facet. The individual shells are symmetry-related interconnected grains, and the large geometric misfit between adjacent tetragonal Mn3O4 grains results in tilt boundaries at the sharp edges of the Co3O4 nanocube core that join via disclinations. We identify four design principles that govern the production of these highly ordered multigrain nanostructures. First, the shape of the substrate nanocrystal must guide the crystallographic orientation of the overgrowth phase. Second, the size of the substrate must be smaller than the characteristic distance between the dislocations. Third, the incompatible symmetry between the overgrowth phase and the substrate increases the geometric misfit strain between the grains. Fourth, for GB formation under near-equilibrium conditions, the surface energy of the shell needs to be balanced by the increasing elastic energy through ligand passivation. With these principles, we can produce a range of multigrain nanocrystals containing distinct GB defects.</description><subject>MATERIALS SCIENCE</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNyssKwjAQQNEgCtbHPwzuC4lt07j2geDWfQkxbUfaBDqj0L-3gh_g6nLhzESi8lKnuTblXCRS7k0qTaaXYkX0lFIWqswTcTt5wiaADQ-gMXA7LUGsoX91jM1gMUCwIbphJLYdwRstND72ngd00CPVyED8hRuxqCfit7-uxe5yvh-vaSTGihyyd62LIXjHldLqoAqT_YU-CNI_Tg</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Oh, Myoung Hwan</creator><creator>Cho, Min Gee</creator><creator>Chung, Dong Young</creator><creator>Park, Inchul</creator><creator>Kwon, Youngwook Paul</creator><creator>Ophus, Colin</creator><creator>Kim, Dokyoon</creator><creator>Kim, Min Gyu</creator><creator>Jeong, Beomgyun</creator><creator>Gu, X. Wendy</creator><creator>Jo, Jinwoung</creator><creator>Yoo, Ji Mun</creator><creator>Hong, Jaeyoung</creator><creator>McMains, Sara</creator><creator>Kang, Kisuk</creator><creator>Sung, Yung-Eun</creator><creator>Alivisatos, A Paul</creator><creator>Hyeon, Taeghwan</creator><general>Nature Publishing Group</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200115</creationdate><title>Design and synthesis of multigrain nanocrystals via geometric misfit strain</title><author>Oh, Myoung Hwan ; Cho, Min Gee ; Chung, Dong Young ; Park, Inchul ; Kwon, Youngwook Paul ; Ophus, Colin ; Kim, Dokyoon ; Kim, Min Gyu ; Jeong, Beomgyun ; Gu, X. Wendy ; Jo, Jinwoung ; Yoo, Ji Mun ; Hong, Jaeyoung ; McMains, Sara ; Kang, Kisuk ; Sung, Yung-Eun ; Alivisatos, A Paul ; Hyeon, Taeghwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_16191583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Myoung Hwan</creatorcontrib><creatorcontrib>Cho, Min Gee</creatorcontrib><creatorcontrib>Chung, Dong Young</creatorcontrib><creatorcontrib>Park, Inchul</creatorcontrib><creatorcontrib>Kwon, Youngwook Paul</creatorcontrib><creatorcontrib>Ophus, Colin</creatorcontrib><creatorcontrib>Kim, Dokyoon</creatorcontrib><creatorcontrib>Kim, Min Gyu</creatorcontrib><creatorcontrib>Jeong, Beomgyun</creatorcontrib><creatorcontrib>Gu, X. Wendy</creatorcontrib><creatorcontrib>Jo, Jinwoung</creatorcontrib><creatorcontrib>Yoo, Ji Mun</creatorcontrib><creatorcontrib>Hong, Jaeyoung</creatorcontrib><creatorcontrib>McMains, Sara</creatorcontrib><creatorcontrib>Kang, Kisuk</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Alivisatos, A Paul</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><creatorcontrib>Univ. of California, Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Myoung Hwan</au><au>Cho, Min Gee</au><au>Chung, Dong Young</au><au>Park, Inchul</au><au>Kwon, Youngwook Paul</au><au>Ophus, Colin</au><au>Kim, Dokyoon</au><au>Kim, Min Gyu</au><au>Jeong, Beomgyun</au><au>Gu, X. Wendy</au><au>Jo, Jinwoung</au><au>Yoo, Ji Mun</au><au>Hong, Jaeyoung</au><au>McMains, Sara</au><au>Kang, Kisuk</au><au>Sung, Yung-Eun</au><au>Alivisatos, A Paul</au><au>Hyeon, Taeghwan</au><aucorp>Univ. of California, Berkeley, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and synthesis of multigrain nanocrystals via geometric misfit strain</atitle><jtitle>Nature (London)</jtitle><date>2020-01-15</date><risdate>2020</risdate><volume>577</volume><issue>7790</issue><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The impact of topological defects associated with grain boundaries (GB defects) on the electrical, optical, magnetic, mechanical and chemical properties of nanocrystalline materials is well known. Yet, elucidating this influence experimentally is difficult because grains typically exhibit a large range of sizes, shapes and random relative orientations. Here we demonstrate that precise control of the heteroepitaxy of colloidal polyhedral nanocrystals enables ordered grain growth and can thereby produce material samples with uniform GB defects. We highlight our approach with a multigrain nanocrystal comprising a Co3O4 nanocube core that carries a Mn3O4 shell on each facet. The individual shells are symmetry-related interconnected grains, and the large geometric misfit between adjacent tetragonal Mn3O4 grains results in tilt boundaries at the sharp edges of the Co3O4 nanocube core that join via disclinations. We identify four design principles that govern the production of these highly ordered multigrain nanostructures. First, the shape of the substrate nanocrystal must guide the crystallographic orientation of the overgrowth phase. Second, the size of the substrate must be smaller than the characteristic distance between the dislocations. Third, the incompatible symmetry between the overgrowth phase and the substrate increases the geometric misfit strain between the grains. Fourth, for GB formation under near-equilibrium conditions, the surface energy of the shell needs to be balanced by the increasing elastic energy through ligand passivation. With these principles, we can produce a range of multigrain nanocrystals containing distinct GB defects.</abstract><cop>United States</cop><pub>Nature Publishing Group</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2020-01, Vol.577 (7790)
issn 0028-0836
1476-4687
language eng
recordid cdi_osti_scitechconnect_1619158
source Nature
subjects MATERIALS SCIENCE
title Design and synthesis of multigrain nanocrystals via geometric misfit strain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20synthesis%20of%20multigrain%20nanocrystals%20via%20geometric%20misfit%20strain&rft.jtitle=Nature%20(London)&rft.au=Oh,%20Myoung%20Hwan&rft.aucorp=Univ.%20of%20California,%20Berkeley,%20CA%20(United%20States)&rft.date=2020-01-15&rft.volume=577&rft.issue=7790&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/&rft_dat=%3Costi%3E1619158%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_16191583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true