Loading…

Weighted Mobility

Engineering semiconductor devices requires an understanding of charge carrier mobility. Typically, mobilities are estimated using Hall effect and electrical resistivity meausrements, which are are routinely performed at room temperature and below, in materials with mobilities greater than 1 cm2 V‐1...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2020-06, Vol.32 (25), p.e2001537-n/a
Main Authors: Snyder, G. Jeffrey, Snyder, Alemayouh H., Wood, Maxwell, Gurunathan, Ramya, Snyder, Berhanu H., Niu, Changning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5067-42d8bd597b0110e4b6f927af93bbb9f9dedf89d7efdeed5a5538d9feba6b98033
cites cdi_FETCH-LOGICAL-c5067-42d8bd597b0110e4b6f927af93bbb9f9dedf89d7efdeed5a5538d9feba6b98033
container_end_page n/a
container_issue 25
container_start_page e2001537
container_title Advanced materials (Weinheim)
container_volume 32
creator Snyder, G. Jeffrey
Snyder, Alemayouh H.
Wood, Maxwell
Gurunathan, Ramya
Snyder, Berhanu H.
Niu, Changning
description Engineering semiconductor devices requires an understanding of charge carrier mobility. Typically, mobilities are estimated using Hall effect and electrical resistivity meausrements, which are are routinely performed at room temperature and below, in materials with mobilities greater than 1 cm2 V‐1 s‐1. With the availability of combined Seebeck coefficient and electrical resistivity measurement systems, it is now easy to measure the weighted mobility (electron mobility weighted by the density of electronic states). A simple method to calculate the weighted mobility from Seebeck coefficient and electrical resistivity measurements is introduced, which gives good results at room temperature and above, and for mobilities as low as 10−3 cm2 V‐1 s‐1, μw=331cm2Vs(mΩ cmρ)  (T300 K)−3/2[ exp[ |S|kB/e−2]1+exp[−5(|S|kB/e−1) ]+3π2|S|kB/e1+exp[5(|S|kB/e−1) ] ]Here, μw is the weighted mobility, ρ is the electrical resistivity measured in mΩ cm, T is the absolute temperature in K, S is the Seebeck coefficient, and kB/e = 86.3 µV K–1. Weighted mobility analysis can elucidate the electronic structure and scattering mechanisms in materials and is particularly helpful in understanding and optimizing thermoelectric systems. The weighted mobility, easily computed from measurements of the Seebeck coefficient and electrical resistivity, is an accurate measure of the charge carrier mobility and effective mass. It is even more sensitive than measurements of the Hall effect for revealing electron transport mechanisms in complex materials ranging from metals, semiconductors, and conducting polymers.
doi_str_mv 10.1002/adma.202001537
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1630067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404043570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5067-42d8bd597b0110e4b6f927af93bbb9f9dedf89d7efdeed5a5538d9feba6b98033</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgWgpDCyMCMHCknK2Yyceq_IptWIBMVp2fKapkgbiRKj_nlQpRWJBN3h5_J7uJeSMwpgCsBvjSjNmwACo4MkeGVLBaBSDEvtkCIqLSMk4HZCjEJYAoCTIQzLgLKbAaDwkp2-Yvy8adBfzyuZF3qyPyYE3RcCT7Tsir_d3L9PHaPb88DSdzKJMgEyimLnUOqESC5QCxlZ6xRLjFbfWKq8cOp8ql6B3iE4YIXjqlEdrpFUpcD4il31uFZpchyxvMFtk1WqFWaOp5NBt6dB1jz7q6rPF0OgyDxkWhVlh1QbNYuiGiwQ6evWHLqu2XnUndIpKymJFN1vHvcrqKoQavf6o89LUa01BbxrVm0b1rtHuw_k2trUluh3_qbADqgdfeYHrf-L05HY--Q3_Bq2VfyU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416124913</pqid></control><display><type>article</type><title>Weighted Mobility</title><source>Wiley</source><creator>Snyder, G. Jeffrey ; Snyder, Alemayouh H. ; Wood, Maxwell ; Gurunathan, Ramya ; Snyder, Berhanu H. ; Niu, Changning</creator><creatorcontrib>Snyder, G. Jeffrey ; Snyder, Alemayouh H. ; Wood, Maxwell ; Gurunathan, Ramya ; Snyder, Berhanu H. ; Niu, Changning ; QuesTek Innovations LLC, Evanston, IL (United States)</creatorcontrib><description>Engineering semiconductor devices requires an understanding of charge carrier mobility. Typically, mobilities are estimated using Hall effect and electrical resistivity meausrements, which are are routinely performed at room temperature and below, in materials with mobilities greater than 1 cm2 V‐1 s‐1. With the availability of combined Seebeck coefficient and electrical resistivity measurement systems, it is now easy to measure the weighted mobility (electron mobility weighted by the density of electronic states). A simple method to calculate the weighted mobility from Seebeck coefficient and electrical resistivity measurements is introduced, which gives good results at room temperature and above, and for mobilities as low as 10−3 cm2 V‐1 s‐1, μw=331cm2Vs(mΩ cmρ)  (T300 K)−3/2[ exp[ |S|kB/e−2]1+exp[−5(|S|kB/e−1) ]+3π2|S|kB/e1+exp[5(|S|kB/e−1) ] ]Here, μw is the weighted mobility, ρ is the electrical resistivity measured in mΩ cm, T is the absolute temperature in K, S is the Seebeck coefficient, and kB/e = 86.3 µV K–1. Weighted mobility analysis can elucidate the electronic structure and scattering mechanisms in materials and is particularly helpful in understanding and optimizing thermoelectric systems. The weighted mobility, easily computed from measurements of the Seebeck coefficient and electrical resistivity, is an accurate measure of the charge carrier mobility and effective mass. It is even more sensitive than measurements of the Hall effect for revealing electron transport mechanisms in complex materials ranging from metals, semiconductors, and conducting polymers.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202001537</identifier><identifier>PMID: 32410214</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carrier mobility ; Current carriers ; electrical measurements ; Electrical resistivity ; electrical transport ; Electron mobility ; Electron states ; Electronic structure ; Hall effect ; MATERIALS SCIENCE ; mobility ; mobility organic semiconductors ; organic semiconductors ; photovoltaics ; Room temperature ; Seebeck effect ; Semiconductor devices ; semiconductors ; Temperature ; thermoelectrics</subject><ispartof>Advanced materials (Weinheim), 2020-06, Vol.32 (25), p.e2001537-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5067-42d8bd597b0110e4b6f927af93bbb9f9dedf89d7efdeed5a5538d9feba6b98033</citedby><cites>FETCH-LOGICAL-c5067-42d8bd597b0110e4b6f927af93bbb9f9dedf89d7efdeed5a5538d9feba6b98033</cites><orcidid>0000-0001-7705-4654 ; 0000-0003-2758-6155 ; 0000-0003-1414-8682 ; 0000-0002-9864-0553 ; 0000000298640553 ; 0000000314148682 ; 0000000177054654 ; 0000000327586155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32410214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1630067$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Snyder, G. Jeffrey</creatorcontrib><creatorcontrib>Snyder, Alemayouh H.</creatorcontrib><creatorcontrib>Wood, Maxwell</creatorcontrib><creatorcontrib>Gurunathan, Ramya</creatorcontrib><creatorcontrib>Snyder, Berhanu H.</creatorcontrib><creatorcontrib>Niu, Changning</creatorcontrib><creatorcontrib>QuesTek Innovations LLC, Evanston, IL (United States)</creatorcontrib><title>Weighted Mobility</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Engineering semiconductor devices requires an understanding of charge carrier mobility. Typically, mobilities are estimated using Hall effect and electrical resistivity meausrements, which are are routinely performed at room temperature and below, in materials with mobilities greater than 1 cm2 V‐1 s‐1. With the availability of combined Seebeck coefficient and electrical resistivity measurement systems, it is now easy to measure the weighted mobility (electron mobility weighted by the density of electronic states). A simple method to calculate the weighted mobility from Seebeck coefficient and electrical resistivity measurements is introduced, which gives good results at room temperature and above, and for mobilities as low as 10−3 cm2 V‐1 s‐1, μw=331cm2Vs(mΩ cmρ)  (T300 K)−3/2[ exp[ |S|kB/e−2]1+exp[−5(|S|kB/e−1) ]+3π2|S|kB/e1+exp[5(|S|kB/e−1) ] ]Here, μw is the weighted mobility, ρ is the electrical resistivity measured in mΩ cm, T is the absolute temperature in K, S is the Seebeck coefficient, and kB/e = 86.3 µV K–1. Weighted mobility analysis can elucidate the electronic structure and scattering mechanisms in materials and is particularly helpful in understanding and optimizing thermoelectric systems. The weighted mobility, easily computed from measurements of the Seebeck coefficient and electrical resistivity, is an accurate measure of the charge carrier mobility and effective mass. It is even more sensitive than measurements of the Hall effect for revealing electron transport mechanisms in complex materials ranging from metals, semiconductors, and conducting polymers.</description><subject>Carrier mobility</subject><subject>Current carriers</subject><subject>electrical measurements</subject><subject>Electrical resistivity</subject><subject>electrical transport</subject><subject>Electron mobility</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>Hall effect</subject><subject>MATERIALS SCIENCE</subject><subject>mobility</subject><subject>mobility organic semiconductors</subject><subject>organic semiconductors</subject><subject>photovoltaics</subject><subject>Room temperature</subject><subject>Seebeck effect</subject><subject>Semiconductor devices</subject><subject>semiconductors</subject><subject>Temperature</subject><subject>thermoelectrics</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQBmALgWgpDCyMCMHCknK2Yyceq_IptWIBMVp2fKapkgbiRKj_nlQpRWJBN3h5_J7uJeSMwpgCsBvjSjNmwACo4MkeGVLBaBSDEvtkCIqLSMk4HZCjEJYAoCTIQzLgLKbAaDwkp2-Yvy8adBfzyuZF3qyPyYE3RcCT7Tsir_d3L9PHaPb88DSdzKJMgEyimLnUOqESC5QCxlZ6xRLjFbfWKq8cOp8ql6B3iE4YIXjqlEdrpFUpcD4il31uFZpchyxvMFtk1WqFWaOp5NBt6dB1jz7q6rPF0OgyDxkWhVlh1QbNYuiGiwQ6evWHLqu2XnUndIpKymJFN1vHvcrqKoQavf6o89LUa01BbxrVm0b1rtHuw_k2trUluh3_qbADqgdfeYHrf-L05HY--Q3_Bq2VfyU</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Snyder, G. Jeffrey</creator><creator>Snyder, Alemayouh H.</creator><creator>Wood, Maxwell</creator><creator>Gurunathan, Ramya</creator><creator>Snyder, Berhanu H.</creator><creator>Niu, Changning</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7705-4654</orcidid><orcidid>https://orcid.org/0000-0003-2758-6155</orcidid><orcidid>https://orcid.org/0000-0003-1414-8682</orcidid><orcidid>https://orcid.org/0000-0002-9864-0553</orcidid><orcidid>https://orcid.org/0000000298640553</orcidid><orcidid>https://orcid.org/0000000314148682</orcidid><orcidid>https://orcid.org/0000000177054654</orcidid><orcidid>https://orcid.org/0000000327586155</orcidid></search><sort><creationdate>20200601</creationdate><title>Weighted Mobility</title><author>Snyder, G. Jeffrey ; Snyder, Alemayouh H. ; Wood, Maxwell ; Gurunathan, Ramya ; Snyder, Berhanu H. ; Niu, Changning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5067-42d8bd597b0110e4b6f927af93bbb9f9dedf89d7efdeed5a5538d9feba6b98033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carrier mobility</topic><topic>Current carriers</topic><topic>electrical measurements</topic><topic>Electrical resistivity</topic><topic>electrical transport</topic><topic>Electron mobility</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>Hall effect</topic><topic>MATERIALS SCIENCE</topic><topic>mobility</topic><topic>mobility organic semiconductors</topic><topic>organic semiconductors</topic><topic>photovoltaics</topic><topic>Room temperature</topic><topic>Seebeck effect</topic><topic>Semiconductor devices</topic><topic>semiconductors</topic><topic>Temperature</topic><topic>thermoelectrics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snyder, G. Jeffrey</creatorcontrib><creatorcontrib>Snyder, Alemayouh H.</creatorcontrib><creatorcontrib>Wood, Maxwell</creatorcontrib><creatorcontrib>Gurunathan, Ramya</creatorcontrib><creatorcontrib>Snyder, Berhanu H.</creatorcontrib><creatorcontrib>Niu, Changning</creatorcontrib><creatorcontrib>QuesTek Innovations LLC, Evanston, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snyder, G. Jeffrey</au><au>Snyder, Alemayouh H.</au><au>Wood, Maxwell</au><au>Gurunathan, Ramya</au><au>Snyder, Berhanu H.</au><au>Niu, Changning</au><aucorp>QuesTek Innovations LLC, Evanston, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted Mobility</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>32</volume><issue>25</issue><spage>e2001537</spage><epage>n/a</epage><pages>e2001537-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Engineering semiconductor devices requires an understanding of charge carrier mobility. Typically, mobilities are estimated using Hall effect and electrical resistivity meausrements, which are are routinely performed at room temperature and below, in materials with mobilities greater than 1 cm2 V‐1 s‐1. With the availability of combined Seebeck coefficient and electrical resistivity measurement systems, it is now easy to measure the weighted mobility (electron mobility weighted by the density of electronic states). A simple method to calculate the weighted mobility from Seebeck coefficient and electrical resistivity measurements is introduced, which gives good results at room temperature and above, and for mobilities as low as 10−3 cm2 V‐1 s‐1, μw=331cm2Vs(mΩ cmρ)  (T300 K)−3/2[ exp[ |S|kB/e−2]1+exp[−5(|S|kB/e−1) ]+3π2|S|kB/e1+exp[5(|S|kB/e−1) ] ]Here, μw is the weighted mobility, ρ is the electrical resistivity measured in mΩ cm, T is the absolute temperature in K, S is the Seebeck coefficient, and kB/e = 86.3 µV K–1. Weighted mobility analysis can elucidate the electronic structure and scattering mechanisms in materials and is particularly helpful in understanding and optimizing thermoelectric systems. The weighted mobility, easily computed from measurements of the Seebeck coefficient and electrical resistivity, is an accurate measure of the charge carrier mobility and effective mass. It is even more sensitive than measurements of the Hall effect for revealing electron transport mechanisms in complex materials ranging from metals, semiconductors, and conducting polymers.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32410214</pmid><doi>10.1002/adma.202001537</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7705-4654</orcidid><orcidid>https://orcid.org/0000-0003-2758-6155</orcidid><orcidid>https://orcid.org/0000-0003-1414-8682</orcidid><orcidid>https://orcid.org/0000-0002-9864-0553</orcidid><orcidid>https://orcid.org/0000000298640553</orcidid><orcidid>https://orcid.org/0000000314148682</orcidid><orcidid>https://orcid.org/0000000177054654</orcidid><orcidid>https://orcid.org/0000000327586155</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-06, Vol.32 (25), p.e2001537-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1630067
source Wiley
subjects Carrier mobility
Current carriers
electrical measurements
Electrical resistivity
electrical transport
Electron mobility
Electron states
Electronic structure
Hall effect
MATERIALS SCIENCE
mobility
mobility organic semiconductors
organic semiconductors
photovoltaics
Room temperature
Seebeck effect
Semiconductor devices
semiconductors
Temperature
thermoelectrics
title Weighted Mobility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20Mobility&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Snyder,%20G.%20Jeffrey&rft.aucorp=QuesTek%20Innovations%20LLC,%20Evanston,%20IL%20(United%20States)&rft.date=2020-06-01&rft.volume=32&rft.issue=25&rft.spage=e2001537&rft.epage=n/a&rft.pages=e2001537-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202001537&rft_dat=%3Cproquest_osti_%3E2404043570%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5067-42d8bd597b0110e4b6f927af93bbb9f9dedf89d7efdeed5a5538d9feba6b98033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2416124913&rft_id=info:pmid/32410214&rfr_iscdi=true