Loading…
Weighted Mobility
Engineering semiconductor devices requires an understanding of charge carrier mobility. Typically, mobilities are estimated using Hall effect and electrical resistivity meausrements, which are are routinely performed at room temperature and below, in materials with mobilities greater than 1 cm2 V‐1...
Saved in:
Published in: | Advanced materials (Weinheim) 2020-06, Vol.32 (25), p.e2001537-n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5067-42d8bd597b0110e4b6f927af93bbb9f9dedf89d7efdeed5a5538d9feba6b98033 |
---|---|
cites | cdi_FETCH-LOGICAL-c5067-42d8bd597b0110e4b6f927af93bbb9f9dedf89d7efdeed5a5538d9feba6b98033 |
container_end_page | n/a |
container_issue | 25 |
container_start_page | e2001537 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Snyder, G. Jeffrey Snyder, Alemayouh H. Wood, Maxwell Gurunathan, Ramya Snyder, Berhanu H. Niu, Changning |
description | Engineering semiconductor devices requires an understanding of charge carrier mobility. Typically, mobilities are estimated using Hall effect and electrical resistivity meausrements, which are are routinely performed at room temperature and below, in materials with mobilities greater than 1 cm2 V‐1 s‐1. With the availability of combined Seebeck coefficient and electrical resistivity measurement systems, it is now easy to measure the weighted mobility (electron mobility weighted by the density of electronic states). A simple method to calculate the weighted mobility from Seebeck coefficient and electrical resistivity measurements is introduced, which gives good results at room temperature and above, and for mobilities as low as 10−3 cm2 V‐1 s‐1,
μw=331cm2Vs(mΩ cmρ) (T300 K)−3/2[ exp[ |S|kB/e−2]1+exp[−5(|S|kB/e−1) ]+3π2|S|kB/e1+exp[5(|S|kB/e−1) ] ]Here, μw is the weighted mobility, ρ is the electrical resistivity measured in mΩ cm, T is the absolute temperature in K, S is the Seebeck coefficient, and kB/e = 86.3 µV K–1. Weighted mobility analysis can elucidate the electronic structure and scattering mechanisms in materials and is particularly helpful in understanding and optimizing thermoelectric systems.
The weighted mobility, easily computed from measurements of the Seebeck coefficient and electrical resistivity, is an accurate measure of the charge carrier mobility and effective mass. It is even more sensitive than measurements of the Hall effect for revealing electron transport mechanisms in complex materials ranging from metals, semiconductors, and conducting polymers. |
doi_str_mv | 10.1002/adma.202001537 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1630067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404043570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5067-42d8bd597b0110e4b6f927af93bbb9f9dedf89d7efdeed5a5538d9feba6b98033</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgWgpDCyMCMHCknK2Yyceq_IptWIBMVp2fKapkgbiRKj_nlQpRWJBN3h5_J7uJeSMwpgCsBvjSjNmwACo4MkeGVLBaBSDEvtkCIqLSMk4HZCjEJYAoCTIQzLgLKbAaDwkp2-Yvy8adBfzyuZF3qyPyYE3RcCT7Tsir_d3L9PHaPb88DSdzKJMgEyimLnUOqESC5QCxlZ6xRLjFbfWKq8cOp8ql6B3iE4YIXjqlEdrpFUpcD4il31uFZpchyxvMFtk1WqFWaOp5NBt6dB1jz7q6rPF0OgyDxkWhVlh1QbNYuiGiwQ6evWHLqu2XnUndIpKymJFN1vHvcrqKoQavf6o89LUa01BbxrVm0b1rtHuw_k2trUluh3_qbADqgdfeYHrf-L05HY--Q3_Bq2VfyU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416124913</pqid></control><display><type>article</type><title>Weighted Mobility</title><source>Wiley</source><creator>Snyder, G. Jeffrey ; Snyder, Alemayouh H. ; Wood, Maxwell ; Gurunathan, Ramya ; Snyder, Berhanu H. ; Niu, Changning</creator><creatorcontrib>Snyder, G. Jeffrey ; Snyder, Alemayouh H. ; Wood, Maxwell ; Gurunathan, Ramya ; Snyder, Berhanu H. ; Niu, Changning ; QuesTek Innovations LLC, Evanston, IL (United States)</creatorcontrib><description>Engineering semiconductor devices requires an understanding of charge carrier mobility. Typically, mobilities are estimated using Hall effect and electrical resistivity meausrements, which are are routinely performed at room temperature and below, in materials with mobilities greater than 1 cm2 V‐1 s‐1. With the availability of combined Seebeck coefficient and electrical resistivity measurement systems, it is now easy to measure the weighted mobility (electron mobility weighted by the density of electronic states). A simple method to calculate the weighted mobility from Seebeck coefficient and electrical resistivity measurements is introduced, which gives good results at room temperature and above, and for mobilities as low as 10−3 cm2 V‐1 s‐1,
μw=331cm2Vs(mΩ cmρ) (T300 K)−3/2[ exp[ |S|kB/e−2]1+exp[−5(|S|kB/e−1) ]+3π2|S|kB/e1+exp[5(|S|kB/e−1) ] ]Here, μw is the weighted mobility, ρ is the electrical resistivity measured in mΩ cm, T is the absolute temperature in K, S is the Seebeck coefficient, and kB/e = 86.3 µV K–1. Weighted mobility analysis can elucidate the electronic structure and scattering mechanisms in materials and is particularly helpful in understanding and optimizing thermoelectric systems.
The weighted mobility, easily computed from measurements of the Seebeck coefficient and electrical resistivity, is an accurate measure of the charge carrier mobility and effective mass. It is even more sensitive than measurements of the Hall effect for revealing electron transport mechanisms in complex materials ranging from metals, semiconductors, and conducting polymers.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202001537</identifier><identifier>PMID: 32410214</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carrier mobility ; Current carriers ; electrical measurements ; Electrical resistivity ; electrical transport ; Electron mobility ; Electron states ; Electronic structure ; Hall effect ; MATERIALS SCIENCE ; mobility ; mobility organic semiconductors ; organic semiconductors ; photovoltaics ; Room temperature ; Seebeck effect ; Semiconductor devices ; semiconductors ; Temperature ; thermoelectrics</subject><ispartof>Advanced materials (Weinheim), 2020-06, Vol.32 (25), p.e2001537-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5067-42d8bd597b0110e4b6f927af93bbb9f9dedf89d7efdeed5a5538d9feba6b98033</citedby><cites>FETCH-LOGICAL-c5067-42d8bd597b0110e4b6f927af93bbb9f9dedf89d7efdeed5a5538d9feba6b98033</cites><orcidid>0000-0001-7705-4654 ; 0000-0003-2758-6155 ; 0000-0003-1414-8682 ; 0000-0002-9864-0553 ; 0000000298640553 ; 0000000314148682 ; 0000000177054654 ; 0000000327586155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32410214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1630067$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Snyder, G. Jeffrey</creatorcontrib><creatorcontrib>Snyder, Alemayouh H.</creatorcontrib><creatorcontrib>Wood, Maxwell</creatorcontrib><creatorcontrib>Gurunathan, Ramya</creatorcontrib><creatorcontrib>Snyder, Berhanu H.</creatorcontrib><creatorcontrib>Niu, Changning</creatorcontrib><creatorcontrib>QuesTek Innovations LLC, Evanston, IL (United States)</creatorcontrib><title>Weighted Mobility</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Engineering semiconductor devices requires an understanding of charge carrier mobility. Typically, mobilities are estimated using Hall effect and electrical resistivity meausrements, which are are routinely performed at room temperature and below, in materials with mobilities greater than 1 cm2 V‐1 s‐1. With the availability of combined Seebeck coefficient and electrical resistivity measurement systems, it is now easy to measure the weighted mobility (electron mobility weighted by the density of electronic states). A simple method to calculate the weighted mobility from Seebeck coefficient and electrical resistivity measurements is introduced, which gives good results at room temperature and above, and for mobilities as low as 10−3 cm2 V‐1 s‐1,
μw=331cm2Vs(mΩ cmρ) (T300 K)−3/2[ exp[ |S|kB/e−2]1+exp[−5(|S|kB/e−1) ]+3π2|S|kB/e1+exp[5(|S|kB/e−1) ] ]Here, μw is the weighted mobility, ρ is the electrical resistivity measured in mΩ cm, T is the absolute temperature in K, S is the Seebeck coefficient, and kB/e = 86.3 µV K–1. Weighted mobility analysis can elucidate the electronic structure and scattering mechanisms in materials and is particularly helpful in understanding and optimizing thermoelectric systems.
The weighted mobility, easily computed from measurements of the Seebeck coefficient and electrical resistivity, is an accurate measure of the charge carrier mobility and effective mass. It is even more sensitive than measurements of the Hall effect for revealing electron transport mechanisms in complex materials ranging from metals, semiconductors, and conducting polymers.</description><subject>Carrier mobility</subject><subject>Current carriers</subject><subject>electrical measurements</subject><subject>Electrical resistivity</subject><subject>electrical transport</subject><subject>Electron mobility</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>Hall effect</subject><subject>MATERIALS SCIENCE</subject><subject>mobility</subject><subject>mobility organic semiconductors</subject><subject>organic semiconductors</subject><subject>photovoltaics</subject><subject>Room temperature</subject><subject>Seebeck effect</subject><subject>Semiconductor devices</subject><subject>semiconductors</subject><subject>Temperature</subject><subject>thermoelectrics</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQBmALgWgpDCyMCMHCknK2Yyceq_IptWIBMVp2fKapkgbiRKj_nlQpRWJBN3h5_J7uJeSMwpgCsBvjSjNmwACo4MkeGVLBaBSDEvtkCIqLSMk4HZCjEJYAoCTIQzLgLKbAaDwkp2-Yvy8adBfzyuZF3qyPyYE3RcCT7Tsir_d3L9PHaPb88DSdzKJMgEyimLnUOqESC5QCxlZ6xRLjFbfWKq8cOp8ql6B3iE4YIXjqlEdrpFUpcD4il31uFZpchyxvMFtk1WqFWaOp5NBt6dB1jz7q6rPF0OgyDxkWhVlh1QbNYuiGiwQ6evWHLqu2XnUndIpKymJFN1vHvcrqKoQavf6o89LUa01BbxrVm0b1rtHuw_k2trUluh3_qbADqgdfeYHrf-L05HY--Q3_Bq2VfyU</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Snyder, G. Jeffrey</creator><creator>Snyder, Alemayouh H.</creator><creator>Wood, Maxwell</creator><creator>Gurunathan, Ramya</creator><creator>Snyder, Berhanu H.</creator><creator>Niu, Changning</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7705-4654</orcidid><orcidid>https://orcid.org/0000-0003-2758-6155</orcidid><orcidid>https://orcid.org/0000-0003-1414-8682</orcidid><orcidid>https://orcid.org/0000-0002-9864-0553</orcidid><orcidid>https://orcid.org/0000000298640553</orcidid><orcidid>https://orcid.org/0000000314148682</orcidid><orcidid>https://orcid.org/0000000177054654</orcidid><orcidid>https://orcid.org/0000000327586155</orcidid></search><sort><creationdate>20200601</creationdate><title>Weighted Mobility</title><author>Snyder, G. Jeffrey ; Snyder, Alemayouh H. ; Wood, Maxwell ; Gurunathan, Ramya ; Snyder, Berhanu H. ; Niu, Changning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5067-42d8bd597b0110e4b6f927af93bbb9f9dedf89d7efdeed5a5538d9feba6b98033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carrier mobility</topic><topic>Current carriers</topic><topic>electrical measurements</topic><topic>Electrical resistivity</topic><topic>electrical transport</topic><topic>Electron mobility</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>Hall effect</topic><topic>MATERIALS SCIENCE</topic><topic>mobility</topic><topic>mobility organic semiconductors</topic><topic>organic semiconductors</topic><topic>photovoltaics</topic><topic>Room temperature</topic><topic>Seebeck effect</topic><topic>Semiconductor devices</topic><topic>semiconductors</topic><topic>Temperature</topic><topic>thermoelectrics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snyder, G. Jeffrey</creatorcontrib><creatorcontrib>Snyder, Alemayouh H.</creatorcontrib><creatorcontrib>Wood, Maxwell</creatorcontrib><creatorcontrib>Gurunathan, Ramya</creatorcontrib><creatorcontrib>Snyder, Berhanu H.</creatorcontrib><creatorcontrib>Niu, Changning</creatorcontrib><creatorcontrib>QuesTek Innovations LLC, Evanston, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snyder, G. Jeffrey</au><au>Snyder, Alemayouh H.</au><au>Wood, Maxwell</au><au>Gurunathan, Ramya</au><au>Snyder, Berhanu H.</au><au>Niu, Changning</au><aucorp>QuesTek Innovations LLC, Evanston, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted Mobility</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>32</volume><issue>25</issue><spage>e2001537</spage><epage>n/a</epage><pages>e2001537-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Engineering semiconductor devices requires an understanding of charge carrier mobility. Typically, mobilities are estimated using Hall effect and electrical resistivity meausrements, which are are routinely performed at room temperature and below, in materials with mobilities greater than 1 cm2 V‐1 s‐1. With the availability of combined Seebeck coefficient and electrical resistivity measurement systems, it is now easy to measure the weighted mobility (electron mobility weighted by the density of electronic states). A simple method to calculate the weighted mobility from Seebeck coefficient and electrical resistivity measurements is introduced, which gives good results at room temperature and above, and for mobilities as low as 10−3 cm2 V‐1 s‐1,
μw=331cm2Vs(mΩ cmρ) (T300 K)−3/2[ exp[ |S|kB/e−2]1+exp[−5(|S|kB/e−1) ]+3π2|S|kB/e1+exp[5(|S|kB/e−1) ] ]Here, μw is the weighted mobility, ρ is the electrical resistivity measured in mΩ cm, T is the absolute temperature in K, S is the Seebeck coefficient, and kB/e = 86.3 µV K–1. Weighted mobility analysis can elucidate the electronic structure and scattering mechanisms in materials and is particularly helpful in understanding and optimizing thermoelectric systems.
The weighted mobility, easily computed from measurements of the Seebeck coefficient and electrical resistivity, is an accurate measure of the charge carrier mobility and effective mass. It is even more sensitive than measurements of the Hall effect for revealing electron transport mechanisms in complex materials ranging from metals, semiconductors, and conducting polymers.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32410214</pmid><doi>10.1002/adma.202001537</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7705-4654</orcidid><orcidid>https://orcid.org/0000-0003-2758-6155</orcidid><orcidid>https://orcid.org/0000-0003-1414-8682</orcidid><orcidid>https://orcid.org/0000-0002-9864-0553</orcidid><orcidid>https://orcid.org/0000000298640553</orcidid><orcidid>https://orcid.org/0000000314148682</orcidid><orcidid>https://orcid.org/0000000177054654</orcidid><orcidid>https://orcid.org/0000000327586155</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-06, Vol.32 (25), p.e2001537-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1630067 |
source | Wiley |
subjects | Carrier mobility Current carriers electrical measurements Electrical resistivity electrical transport Electron mobility Electron states Electronic structure Hall effect MATERIALS SCIENCE mobility mobility organic semiconductors organic semiconductors photovoltaics Room temperature Seebeck effect Semiconductor devices semiconductors Temperature thermoelectrics |
title | Weighted Mobility |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20Mobility&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Snyder,%20G.%20Jeffrey&rft.aucorp=QuesTek%20Innovations%20LLC,%20Evanston,%20IL%20(United%20States)&rft.date=2020-06-01&rft.volume=32&rft.issue=25&rft.spage=e2001537&rft.epage=n/a&rft.pages=e2001537-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202001537&rft_dat=%3Cproquest_osti_%3E2404043570%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5067-42d8bd597b0110e4b6f927af93bbb9f9dedf89d7efdeed5a5538d9feba6b98033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2416124913&rft_id=info:pmid/32410214&rfr_iscdi=true |