Loading…

Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping

Atomically dispersed Fe–N–C materials recently hold great interest in costly Pt substitution for the cathodic oxygen reduction reaction of fuel cells. However, the heat treatment involved in the material preparation excites Fe aggregating into nanosized species with low activity rather than single-a...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2020-02, Vol.10 (4), p.2452-2458
Main Authors: Li, Jin-Cheng, Maurya, Sandip, Kim, Yu Seung, Li, Tao, Wang, Liguang, Shi, Qiurong, Liu, Dong, Feng, Shuo, Lin, Yuehe, Shao, Minhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atomically dispersed Fe–N–C materials recently hold great interest in costly Pt substitution for the cathodic oxygen reduction reaction of fuel cells. However, the heat treatment involved in the material preparation excites Fe aggregating into nanosized species with low activity rather than single-atom Fe sites. Herein, we propose a “ceria-assisted” strategy to preferentially generate active single-atom Fe sites in Fe–N–C materials, which involves oxidative polymerization of pyrrole, Ce3+ and Fe3+ adsorption, and subsequent heat treatment. Because of its spatial confinement and strong trapping for Fe atoms, ceria can effectively suppress agglomeration of isolated Fe atoms and stabilize the Fe atoms by bonding to O in the lattice during the heat treatment, leading to a high content of atomically dispersed Fe (4.6 wt %). Accordingly, the final catalyst showed ultrahigh ORR activity with a half-wave potential of 0.915 V and kinetic current density of 7.15 mA cm–2 at 0.9 V. When used at the cathode in anion exchange membrane fuel cell, a maximum power density of 496 mW cm–2 was achieved, which is one of the best performance reported in the literature for Fe–N–C-type electrocatalysts.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.9b04621