Loading…
Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping
Atomically dispersed Fe–N–C materials recently hold great interest in costly Pt substitution for the cathodic oxygen reduction reaction of fuel cells. However, the heat treatment involved in the material preparation excites Fe aggregating into nanosized species with low activity rather than single-a...
Saved in:
Published in: | ACS catalysis 2020-02, Vol.10 (4), p.2452-2458 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a307t-a45c151add39539526a76073c3210693e7e1c0269167a0b36ed2bfde5287e853 |
---|---|
cites | cdi_FETCH-LOGICAL-a307t-a45c151add39539526a76073c3210693e7e1c0269167a0b36ed2bfde5287e853 |
container_end_page | 2458 |
container_issue | 4 |
container_start_page | 2452 |
container_title | ACS catalysis |
container_volume | 10 |
creator | Li, Jin-Cheng Maurya, Sandip Kim, Yu Seung Li, Tao Wang, Liguang Shi, Qiurong Liu, Dong Feng, Shuo Lin, Yuehe Shao, Minhua |
description | Atomically dispersed Fe–N–C materials recently hold great interest in costly Pt substitution for the cathodic oxygen reduction reaction of fuel cells. However, the heat treatment involved in the material preparation excites Fe aggregating into nanosized species with low activity rather than single-atom Fe sites. Herein, we propose a “ceria-assisted” strategy to preferentially generate active single-atom Fe sites in Fe–N–C materials, which involves oxidative polymerization of pyrrole, Ce3+ and Fe3+ adsorption, and subsequent heat treatment. Because of its spatial confinement and strong trapping for Fe atoms, ceria can effectively suppress agglomeration of isolated Fe atoms and stabilize the Fe atoms by bonding to O in the lattice during the heat treatment, leading to a high content of atomically dispersed Fe (4.6 wt %). Accordingly, the final catalyst showed ultrahigh ORR activity with a half-wave potential of 0.915 V and kinetic current density of 7.15 mA cm–2 at 0.9 V. When used at the cathode in anion exchange membrane fuel cell, a maximum power density of 496 mW cm–2 was achieved, which is one of the best performance reported in the literature for Fe–N–C-type electrocatalysts. |
doi_str_mv | 10.1021/acscatal.9b04621 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1631589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e86630990</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-a45c151add39539526a76073c3210693e7e1c0269167a0b36ed2bfde5287e853</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgqb17DJ7dmo9NsnsspWqhULC9h2w2W1O2SUlSsf56U1vBi8MwH8x7D-YBcI_RGCOCn5SOWiXVj-sGlZzgKzAgmLGClZRd_5lvwSjGLcpRMl4JNAB6lVRje_tl3QauculNMUl-B-fBOzjrjU7B_2gfY4qw8wEuP48b4-CbaQ862Yz6sApOTThV7zrrTlLKtXAd1H6flztw06k-mtGlD8H6ebaevhaL5ct8OlkUiiKRClUyjRlWbUtrlpNwJTgSVFOCEa-pEQZrRHiNuVCoody0pOlaw0glTMXoEDycZX1MVkZtk9Hv2juXf5CYU8yqOoPQGaSDjzGYTu6D3alwlBjJk5fy10t58TJTHs-UfJFbfwguP_E__Bu603fx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Jin-Cheng ; Maurya, Sandip ; Kim, Yu Seung ; Li, Tao ; Wang, Liguang ; Shi, Qiurong ; Liu, Dong ; Feng, Shuo ; Lin, Yuehe ; Shao, Minhua</creator><creatorcontrib>Li, Jin-Cheng ; Maurya, Sandip ; Kim, Yu Seung ; Li, Tao ; Wang, Liguang ; Shi, Qiurong ; Liu, Dong ; Feng, Shuo ; Lin, Yuehe ; Shao, Minhua ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Atomically dispersed Fe–N–C materials recently hold great interest in costly Pt substitution for the cathodic oxygen reduction reaction of fuel cells. However, the heat treatment involved in the material preparation excites Fe aggregating into nanosized species with low activity rather than single-atom Fe sites. Herein, we propose a “ceria-assisted” strategy to preferentially generate active single-atom Fe sites in Fe–N–C materials, which involves oxidative polymerization of pyrrole, Ce3+ and Fe3+ adsorption, and subsequent heat treatment. Because of its spatial confinement and strong trapping for Fe atoms, ceria can effectively suppress agglomeration of isolated Fe atoms and stabilize the Fe atoms by bonding to O in the lattice during the heat treatment, leading to a high content of atomically dispersed Fe (4.6 wt %). Accordingly, the final catalyst showed ultrahigh ORR activity with a half-wave potential of 0.915 V and kinetic current density of 7.15 mA cm–2 at 0.9 V. When used at the cathode in anion exchange membrane fuel cell, a maximum power density of 496 mW cm–2 was achieved, which is one of the best performance reported in the literature for Fe–N–C-type electrocatalysts.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.9b04621</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>anion exchange membrane fuel cell ; ceria ; ENERGY STORAGE ; Fe-N ; oxygen reduction ; single-atom catalysts</subject><ispartof>ACS catalysis, 2020-02, Vol.10 (4), p.2452-2458</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-a45c151add39539526a76073c3210693e7e1c0269167a0b36ed2bfde5287e853</citedby><cites>FETCH-LOGICAL-a307t-a45c151add39539526a76073c3210693e7e1c0269167a0b36ed2bfde5287e853</cites><orcidid>0000-0002-7600-2008 ; 0000-0003-4496-0057 ; 0000-0002-5446-3890 ; 0000-0003-3791-7587 ; 0000-0002-0558-774X ; 0000000344960057 ; 000000020558774X ; 0000000254463890 ; 0000000337917587 ; 0000000276002008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1631589$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jin-Cheng</creatorcontrib><creatorcontrib>Maurya, Sandip</creatorcontrib><creatorcontrib>Kim, Yu Seung</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Wang, Liguang</creatorcontrib><creatorcontrib>Shi, Qiurong</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Feng, Shuo</creatorcontrib><creatorcontrib>Lin, Yuehe</creatorcontrib><creatorcontrib>Shao, Minhua</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Atomically dispersed Fe–N–C materials recently hold great interest in costly Pt substitution for the cathodic oxygen reduction reaction of fuel cells. However, the heat treatment involved in the material preparation excites Fe aggregating into nanosized species with low activity rather than single-atom Fe sites. Herein, we propose a “ceria-assisted” strategy to preferentially generate active single-atom Fe sites in Fe–N–C materials, which involves oxidative polymerization of pyrrole, Ce3+ and Fe3+ adsorption, and subsequent heat treatment. Because of its spatial confinement and strong trapping for Fe atoms, ceria can effectively suppress agglomeration of isolated Fe atoms and stabilize the Fe atoms by bonding to O in the lattice during the heat treatment, leading to a high content of atomically dispersed Fe (4.6 wt %). Accordingly, the final catalyst showed ultrahigh ORR activity with a half-wave potential of 0.915 V and kinetic current density of 7.15 mA cm–2 at 0.9 V. When used at the cathode in anion exchange membrane fuel cell, a maximum power density of 496 mW cm–2 was achieved, which is one of the best performance reported in the literature for Fe–N–C-type electrocatalysts.</description><subject>anion exchange membrane fuel cell</subject><subject>ceria</subject><subject>ENERGY STORAGE</subject><subject>Fe-N</subject><subject>oxygen reduction</subject><subject>single-atom catalysts</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgqb17DJ7dmo9NsnsspWqhULC9h2w2W1O2SUlSsf56U1vBi8MwH8x7D-YBcI_RGCOCn5SOWiXVj-sGlZzgKzAgmLGClZRd_5lvwSjGLcpRMl4JNAB6lVRje_tl3QauculNMUl-B-fBOzjrjU7B_2gfY4qw8wEuP48b4-CbaQ862Yz6sApOTThV7zrrTlLKtXAd1H6flztw06k-mtGlD8H6ebaevhaL5ct8OlkUiiKRClUyjRlWbUtrlpNwJTgSVFOCEa-pEQZrRHiNuVCoody0pOlaw0glTMXoEDycZX1MVkZtk9Hv2juXf5CYU8yqOoPQGaSDjzGYTu6D3alwlBjJk5fy10t58TJTHs-UfJFbfwguP_E__Bu603fx</recordid><startdate>20200221</startdate><enddate>20200221</enddate><creator>Li, Jin-Cheng</creator><creator>Maurya, Sandip</creator><creator>Kim, Yu Seung</creator><creator>Li, Tao</creator><creator>Wang, Liguang</creator><creator>Shi, Qiurong</creator><creator>Liu, Dong</creator><creator>Feng, Shuo</creator><creator>Lin, Yuehe</creator><creator>Shao, Minhua</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7600-2008</orcidid><orcidid>https://orcid.org/0000-0003-4496-0057</orcidid><orcidid>https://orcid.org/0000-0002-5446-3890</orcidid><orcidid>https://orcid.org/0000-0003-3791-7587</orcidid><orcidid>https://orcid.org/0000-0002-0558-774X</orcidid><orcidid>https://orcid.org/0000000344960057</orcidid><orcidid>https://orcid.org/000000020558774X</orcidid><orcidid>https://orcid.org/0000000254463890</orcidid><orcidid>https://orcid.org/0000000337917587</orcidid><orcidid>https://orcid.org/0000000276002008</orcidid></search><sort><creationdate>20200221</creationdate><title>Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping</title><author>Li, Jin-Cheng ; Maurya, Sandip ; Kim, Yu Seung ; Li, Tao ; Wang, Liguang ; Shi, Qiurong ; Liu, Dong ; Feng, Shuo ; Lin, Yuehe ; Shao, Minhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-a45c151add39539526a76073c3210693e7e1c0269167a0b36ed2bfde5287e853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>anion exchange membrane fuel cell</topic><topic>ceria</topic><topic>ENERGY STORAGE</topic><topic>Fe-N</topic><topic>oxygen reduction</topic><topic>single-atom catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jin-Cheng</creatorcontrib><creatorcontrib>Maurya, Sandip</creatorcontrib><creatorcontrib>Kim, Yu Seung</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Wang, Liguang</creatorcontrib><creatorcontrib>Shi, Qiurong</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Feng, Shuo</creatorcontrib><creatorcontrib>Lin, Yuehe</creatorcontrib><creatorcontrib>Shao, Minhua</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jin-Cheng</au><au>Maurya, Sandip</au><au>Kim, Yu Seung</au><au>Li, Tao</au><au>Wang, Liguang</au><au>Shi, Qiurong</au><au>Liu, Dong</au><au>Feng, Shuo</au><au>Lin, Yuehe</au><au>Shao, Minhua</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2020-02-21</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><spage>2452</spage><epage>2458</epage><pages>2452-2458</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Atomically dispersed Fe–N–C materials recently hold great interest in costly Pt substitution for the cathodic oxygen reduction reaction of fuel cells. However, the heat treatment involved in the material preparation excites Fe aggregating into nanosized species with low activity rather than single-atom Fe sites. Herein, we propose a “ceria-assisted” strategy to preferentially generate active single-atom Fe sites in Fe–N–C materials, which involves oxidative polymerization of pyrrole, Ce3+ and Fe3+ adsorption, and subsequent heat treatment. Because of its spatial confinement and strong trapping for Fe atoms, ceria can effectively suppress agglomeration of isolated Fe atoms and stabilize the Fe atoms by bonding to O in the lattice during the heat treatment, leading to a high content of atomically dispersed Fe (4.6 wt %). Accordingly, the final catalyst showed ultrahigh ORR activity with a half-wave potential of 0.915 V and kinetic current density of 7.15 mA cm–2 at 0.9 V. When used at the cathode in anion exchange membrane fuel cell, a maximum power density of 496 mW cm–2 was achieved, which is one of the best performance reported in the literature for Fe–N–C-type electrocatalysts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acscatal.9b04621</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7600-2008</orcidid><orcidid>https://orcid.org/0000-0003-4496-0057</orcidid><orcidid>https://orcid.org/0000-0002-5446-3890</orcidid><orcidid>https://orcid.org/0000-0003-3791-7587</orcidid><orcidid>https://orcid.org/0000-0002-0558-774X</orcidid><orcidid>https://orcid.org/0000000344960057</orcidid><orcidid>https://orcid.org/000000020558774X</orcidid><orcidid>https://orcid.org/0000000254463890</orcidid><orcidid>https://orcid.org/0000000337917587</orcidid><orcidid>https://orcid.org/0000000276002008</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2155-5435 |
ispartof | ACS catalysis, 2020-02, Vol.10 (4), p.2452-2458 |
issn | 2155-5435 2155-5435 |
language | eng |
recordid | cdi_osti_scitechconnect_1631589 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | anion exchange membrane fuel cell ceria ENERGY STORAGE Fe-N oxygen reduction single-atom catalysts |
title | Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A54%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20Single-Atom%20Iron%20Electrocatalysts%20for%20Oxygen%20Reduction%20via%20Ceria%20Confining%20and%20Trapping&rft.jtitle=ACS%20catalysis&rft.au=Li,%20Jin-Cheng&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2020-02-21&rft.volume=10&rft.issue=4&rft.spage=2452&rft.epage=2458&rft.pages=2452-2458&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.9b04621&rft_dat=%3Cacs_osti_%3Ee86630990%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a307t-a45c151add39539526a76073c3210693e7e1c0269167a0b36ed2bfde5287e853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |