Loading…

Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping

Atomically dispersed Fe–N–C materials recently hold great interest in costly Pt substitution for the cathodic oxygen reduction reaction of fuel cells. However, the heat treatment involved in the material preparation excites Fe aggregating into nanosized species with low activity rather than single-a...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2020-02, Vol.10 (4), p.2452-2458
Main Authors: Li, Jin-Cheng, Maurya, Sandip, Kim, Yu Seung, Li, Tao, Wang, Liguang, Shi, Qiurong, Liu, Dong, Feng, Shuo, Lin, Yuehe, Shao, Minhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a307t-a45c151add39539526a76073c3210693e7e1c0269167a0b36ed2bfde5287e853
cites cdi_FETCH-LOGICAL-a307t-a45c151add39539526a76073c3210693e7e1c0269167a0b36ed2bfde5287e853
container_end_page 2458
container_issue 4
container_start_page 2452
container_title ACS catalysis
container_volume 10
creator Li, Jin-Cheng
Maurya, Sandip
Kim, Yu Seung
Li, Tao
Wang, Liguang
Shi, Qiurong
Liu, Dong
Feng, Shuo
Lin, Yuehe
Shao, Minhua
description Atomically dispersed Fe–N–C materials recently hold great interest in costly Pt substitution for the cathodic oxygen reduction reaction of fuel cells. However, the heat treatment involved in the material preparation excites Fe aggregating into nanosized species with low activity rather than single-atom Fe sites. Herein, we propose a “ceria-assisted” strategy to preferentially generate active single-atom Fe sites in Fe–N–C materials, which involves oxidative polymerization of pyrrole, Ce3+ and Fe3+ adsorption, and subsequent heat treatment. Because of its spatial confinement and strong trapping for Fe atoms, ceria can effectively suppress agglomeration of isolated Fe atoms and stabilize the Fe atoms by bonding to O in the lattice during the heat treatment, leading to a high content of atomically dispersed Fe (4.6 wt %). Accordingly, the final catalyst showed ultrahigh ORR activity with a half-wave potential of 0.915 V and kinetic current density of 7.15 mA cm–2 at 0.9 V. When used at the cathode in anion exchange membrane fuel cell, a maximum power density of 496 mW cm–2 was achieved, which is one of the best performance reported in the literature for Fe–N–C-type electrocatalysts.
doi_str_mv 10.1021/acscatal.9b04621
format article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1631589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e86630990</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-a45c151add39539526a76073c3210693e7e1c0269167a0b36ed2bfde5287e853</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgqb17DJ7dmo9NsnsspWqhULC9h2w2W1O2SUlSsf56U1vBi8MwH8x7D-YBcI_RGCOCn5SOWiXVj-sGlZzgKzAgmLGClZRd_5lvwSjGLcpRMl4JNAB6lVRje_tl3QauculNMUl-B-fBOzjrjU7B_2gfY4qw8wEuP48b4-CbaQ862Yz6sApOTThV7zrrTlLKtXAd1H6flztw06k-mtGlD8H6ebaevhaL5ct8OlkUiiKRClUyjRlWbUtrlpNwJTgSVFOCEa-pEQZrRHiNuVCoody0pOlaw0glTMXoEDycZX1MVkZtk9Hv2juXf5CYU8yqOoPQGaSDjzGYTu6D3alwlBjJk5fy10t58TJTHs-UfJFbfwguP_E__Bu603fx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Jin-Cheng ; Maurya, Sandip ; Kim, Yu Seung ; Li, Tao ; Wang, Liguang ; Shi, Qiurong ; Liu, Dong ; Feng, Shuo ; Lin, Yuehe ; Shao, Minhua</creator><creatorcontrib>Li, Jin-Cheng ; Maurya, Sandip ; Kim, Yu Seung ; Li, Tao ; Wang, Liguang ; Shi, Qiurong ; Liu, Dong ; Feng, Shuo ; Lin, Yuehe ; Shao, Minhua ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Atomically dispersed Fe–N–C materials recently hold great interest in costly Pt substitution for the cathodic oxygen reduction reaction of fuel cells. However, the heat treatment involved in the material preparation excites Fe aggregating into nanosized species with low activity rather than single-atom Fe sites. Herein, we propose a “ceria-assisted” strategy to preferentially generate active single-atom Fe sites in Fe–N–C materials, which involves oxidative polymerization of pyrrole, Ce3+ and Fe3+ adsorption, and subsequent heat treatment. Because of its spatial confinement and strong trapping for Fe atoms, ceria can effectively suppress agglomeration of isolated Fe atoms and stabilize the Fe atoms by bonding to O in the lattice during the heat treatment, leading to a high content of atomically dispersed Fe (4.6 wt %). Accordingly, the final catalyst showed ultrahigh ORR activity with a half-wave potential of 0.915 V and kinetic current density of 7.15 mA cm–2 at 0.9 V. When used at the cathode in anion exchange membrane fuel cell, a maximum power density of 496 mW cm–2 was achieved, which is one of the best performance reported in the literature for Fe–N–C-type electrocatalysts.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.9b04621</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>anion exchange membrane fuel cell ; ceria ; ENERGY STORAGE ; Fe-N ; oxygen reduction ; single-atom catalysts</subject><ispartof>ACS catalysis, 2020-02, Vol.10 (4), p.2452-2458</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-a45c151add39539526a76073c3210693e7e1c0269167a0b36ed2bfde5287e853</citedby><cites>FETCH-LOGICAL-a307t-a45c151add39539526a76073c3210693e7e1c0269167a0b36ed2bfde5287e853</cites><orcidid>0000-0002-7600-2008 ; 0000-0003-4496-0057 ; 0000-0002-5446-3890 ; 0000-0003-3791-7587 ; 0000-0002-0558-774X ; 0000000344960057 ; 000000020558774X ; 0000000254463890 ; 0000000337917587 ; 0000000276002008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1631589$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jin-Cheng</creatorcontrib><creatorcontrib>Maurya, Sandip</creatorcontrib><creatorcontrib>Kim, Yu Seung</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Wang, Liguang</creatorcontrib><creatorcontrib>Shi, Qiurong</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Feng, Shuo</creatorcontrib><creatorcontrib>Lin, Yuehe</creatorcontrib><creatorcontrib>Shao, Minhua</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Atomically dispersed Fe–N–C materials recently hold great interest in costly Pt substitution for the cathodic oxygen reduction reaction of fuel cells. However, the heat treatment involved in the material preparation excites Fe aggregating into nanosized species with low activity rather than single-atom Fe sites. Herein, we propose a “ceria-assisted” strategy to preferentially generate active single-atom Fe sites in Fe–N–C materials, which involves oxidative polymerization of pyrrole, Ce3+ and Fe3+ adsorption, and subsequent heat treatment. Because of its spatial confinement and strong trapping for Fe atoms, ceria can effectively suppress agglomeration of isolated Fe atoms and stabilize the Fe atoms by bonding to O in the lattice during the heat treatment, leading to a high content of atomically dispersed Fe (4.6 wt %). Accordingly, the final catalyst showed ultrahigh ORR activity with a half-wave potential of 0.915 V and kinetic current density of 7.15 mA cm–2 at 0.9 V. When used at the cathode in anion exchange membrane fuel cell, a maximum power density of 496 mW cm–2 was achieved, which is one of the best performance reported in the literature for Fe–N–C-type electrocatalysts.</description><subject>anion exchange membrane fuel cell</subject><subject>ceria</subject><subject>ENERGY STORAGE</subject><subject>Fe-N</subject><subject>oxygen reduction</subject><subject>single-atom catalysts</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgqb17DJ7dmo9NsnsspWqhULC9h2w2W1O2SUlSsf56U1vBi8MwH8x7D-YBcI_RGCOCn5SOWiXVj-sGlZzgKzAgmLGClZRd_5lvwSjGLcpRMl4JNAB6lVRje_tl3QauculNMUl-B-fBOzjrjU7B_2gfY4qw8wEuP48b4-CbaQ862Yz6sApOTThV7zrrTlLKtXAd1H6flztw06k-mtGlD8H6ebaevhaL5ct8OlkUiiKRClUyjRlWbUtrlpNwJTgSVFOCEa-pEQZrRHiNuVCoody0pOlaw0glTMXoEDycZX1MVkZtk9Hv2juXf5CYU8yqOoPQGaSDjzGYTu6D3alwlBjJk5fy10t58TJTHs-UfJFbfwguP_E__Bu603fx</recordid><startdate>20200221</startdate><enddate>20200221</enddate><creator>Li, Jin-Cheng</creator><creator>Maurya, Sandip</creator><creator>Kim, Yu Seung</creator><creator>Li, Tao</creator><creator>Wang, Liguang</creator><creator>Shi, Qiurong</creator><creator>Liu, Dong</creator><creator>Feng, Shuo</creator><creator>Lin, Yuehe</creator><creator>Shao, Minhua</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7600-2008</orcidid><orcidid>https://orcid.org/0000-0003-4496-0057</orcidid><orcidid>https://orcid.org/0000-0002-5446-3890</orcidid><orcidid>https://orcid.org/0000-0003-3791-7587</orcidid><orcidid>https://orcid.org/0000-0002-0558-774X</orcidid><orcidid>https://orcid.org/0000000344960057</orcidid><orcidid>https://orcid.org/000000020558774X</orcidid><orcidid>https://orcid.org/0000000254463890</orcidid><orcidid>https://orcid.org/0000000337917587</orcidid><orcidid>https://orcid.org/0000000276002008</orcidid></search><sort><creationdate>20200221</creationdate><title>Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping</title><author>Li, Jin-Cheng ; Maurya, Sandip ; Kim, Yu Seung ; Li, Tao ; Wang, Liguang ; Shi, Qiurong ; Liu, Dong ; Feng, Shuo ; Lin, Yuehe ; Shao, Minhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-a45c151add39539526a76073c3210693e7e1c0269167a0b36ed2bfde5287e853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>anion exchange membrane fuel cell</topic><topic>ceria</topic><topic>ENERGY STORAGE</topic><topic>Fe-N</topic><topic>oxygen reduction</topic><topic>single-atom catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jin-Cheng</creatorcontrib><creatorcontrib>Maurya, Sandip</creatorcontrib><creatorcontrib>Kim, Yu Seung</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Wang, Liguang</creatorcontrib><creatorcontrib>Shi, Qiurong</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Feng, Shuo</creatorcontrib><creatorcontrib>Lin, Yuehe</creatorcontrib><creatorcontrib>Shao, Minhua</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jin-Cheng</au><au>Maurya, Sandip</au><au>Kim, Yu Seung</au><au>Li, Tao</au><au>Wang, Liguang</au><au>Shi, Qiurong</au><au>Liu, Dong</au><au>Feng, Shuo</au><au>Lin, Yuehe</au><au>Shao, Minhua</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2020-02-21</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><spage>2452</spage><epage>2458</epage><pages>2452-2458</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Atomically dispersed Fe–N–C materials recently hold great interest in costly Pt substitution for the cathodic oxygen reduction reaction of fuel cells. However, the heat treatment involved in the material preparation excites Fe aggregating into nanosized species with low activity rather than single-atom Fe sites. Herein, we propose a “ceria-assisted” strategy to preferentially generate active single-atom Fe sites in Fe–N–C materials, which involves oxidative polymerization of pyrrole, Ce3+ and Fe3+ adsorption, and subsequent heat treatment. Because of its spatial confinement and strong trapping for Fe atoms, ceria can effectively suppress agglomeration of isolated Fe atoms and stabilize the Fe atoms by bonding to O in the lattice during the heat treatment, leading to a high content of atomically dispersed Fe (4.6 wt %). Accordingly, the final catalyst showed ultrahigh ORR activity with a half-wave potential of 0.915 V and kinetic current density of 7.15 mA cm–2 at 0.9 V. When used at the cathode in anion exchange membrane fuel cell, a maximum power density of 496 mW cm–2 was achieved, which is one of the best performance reported in the literature for Fe–N–C-type electrocatalysts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acscatal.9b04621</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7600-2008</orcidid><orcidid>https://orcid.org/0000-0003-4496-0057</orcidid><orcidid>https://orcid.org/0000-0002-5446-3890</orcidid><orcidid>https://orcid.org/0000-0003-3791-7587</orcidid><orcidid>https://orcid.org/0000-0002-0558-774X</orcidid><orcidid>https://orcid.org/0000000344960057</orcidid><orcidid>https://orcid.org/000000020558774X</orcidid><orcidid>https://orcid.org/0000000254463890</orcidid><orcidid>https://orcid.org/0000000337917587</orcidid><orcidid>https://orcid.org/0000000276002008</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2020-02, Vol.10 (4), p.2452-2458
issn 2155-5435
2155-5435
language eng
recordid cdi_osti_scitechconnect_1631589
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects anion exchange membrane fuel cell
ceria
ENERGY STORAGE
Fe-N
oxygen reduction
single-atom catalysts
title Stabilizing Single-Atom Iron Electrocatalysts for Oxygen Reduction via Ceria Confining and Trapping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A54%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20Single-Atom%20Iron%20Electrocatalysts%20for%20Oxygen%20Reduction%20via%20Ceria%20Confining%20and%20Trapping&rft.jtitle=ACS%20catalysis&rft.au=Li,%20Jin-Cheng&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2020-02-21&rft.volume=10&rft.issue=4&rft.spage=2452&rft.epage=2458&rft.pages=2452-2458&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.9b04621&rft_dat=%3Cacs_osti_%3Ee86630990%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a307t-a45c151add39539526a76073c3210693e7e1c0269167a0b36ed2bfde5287e853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true