Loading…

Field-Angle-Resolved Magnetic Excitations as a Probe of Hidden-Order Symmetry in CeB 6

In contrast to magnetic order formed by electrons' dipolar moments, ordering phenomena associated with higher-order multipoles (quadrupoles, octupoles, etc.) are more difficult to characterize because of the limited choice of experimental probes that can distinguish different multipolar moments...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2020-04, Vol.10 (2), Article 021010
Main Authors: Portnichenko, P. Y., Akbari, A., Nikitin, S. E., Cameron, A. S., Dukhnenko, A. V., Filipov, V. B., Shitsevalova, N. Yu, Čermák, P., Radelytskyi, I., Schneidewind, A., Ollivier, J., Podlesnyak, A., Huesges, Z., Xu, J., Ivanov, A., Sidis, Y., Petit, S., Mignot, J.-M., Thalmeier, P., Inosov, D. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In contrast to magnetic order formed by electrons' dipolar moments, ordering phenomena associated with higher-order multipoles (quadrupoles, octupoles, etc.) are more difficult to characterize because of the limited choice of experimental probes that can distinguish different multipolar moments. The heavy-fermion compound CeB 6 and its La-diluted alloys are among the best-studied realizations of the long-range-ordered multipolar phases, often referred to as "hidden order". Previously the hidden order in phase II was identified as primary antiferroquadrupolar (AFQ) and field-induced octupolar (AFO) order. Here we present a combined experimental and theoretical investigation of collective excitations in the phase II of CeB 6. Inelastic neutron scattering (INS) in fields up to 16.5 T reveals a new high-energy mode above 14 T in addition to the low-energy magnetic excitations. The experimental dependence of their energy on the magnitude and angle of the applied magnetic field is compared to the results of a multipolar interaction model. The magnetic excitation spectrum in rotating field is calculated within a localized approach using the pseudo-spin presentation for the Γ 8 states. We show that the rotating-field technique at fixed momentum can complement conventional INS measurements of the dispersion at constant field and holds great promise for identifying the symmetry of multipolar order parameters and the details of inter-multipolar interactions that stabilize hidden-order phases.
ISSN:2160-3308
2160-3308
DOI:10.1103/PhysRevX.10.021010