Loading…

Shock equation of state of LiH6 to 1.1 TPa

Using laser-generated shock waves, we have measured pressure, density, and temperature of LiH on the principal Hugoniot between 260 and 1100 GPa (2.6–11 Mbar) and on a second-shock Hugoniot up to 1400 GPa to near fivefold compression, extending the maximum pressure reached in non-nuclear experiments...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2017-10, Vol.96 (13)
Main Authors: Lazicki, A, London, R A, Coppari, F, Erskine, D, Whitley, H D, Caspersen, K J, Fratanduono, D E, Morales, M A, Celliers, P M, Eggert, J H, Millot, M, Swift, D C, Collins, G W, Kucheyev, S O, Castor, J I, Nilsen, J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 13
container_start_page
container_title Physical review. B
container_volume 96
creator Lazicki, A
London, R A
Coppari, F
Erskine, D
Whitley, H D
Caspersen, K J
Fratanduono, D E
Morales, M A
Celliers, P M
Eggert, J H
Millot, M
Swift, D C
Collins, G W
Kucheyev, S O
Castor, J I
Nilsen, J
description Using laser-generated shock waves, we have measured pressure, density, and temperature of LiH on the principal Hugoniot between 260 and 1100 GPa (2.6–11 Mbar) and on a second-shock Hugoniot up to 1400 GPa to near fivefold compression, extending the maximum pressure reached in non-nuclear experiments by a factor of two. We observe the onset of metal-like reflectivity consistent with temperature-induced ionization of the Li 2s electron, and no sign of additional changes in ionization up to the maximum pressure. Our measurements are in good agreement with gas gun, Z-machine, and underground test data and are accurately described by quantum molecular dynamics simulations. The results confirm the validity of equation of state models built on an average-atom description of the electron-thermal contribution to the free energy and a density-dependent Grüneisen parameter to describe shock response of LiH over this pressure range.
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1632378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126923660</sourcerecordid><originalsourceid>FETCH-LOGICAL-o550-4e2ebbbe5778cabe303fc8e86c298b323ff909494b7ce66e3982d3a6057457d83</originalsourceid><addsrcrecordid>eNo9jsFKAzEURYMoWGr_IehOGHmTTF7yllLUFgYUnP2QpG_oVJnYJv1_Wyqu7lkcDvdKzFSDVBEhXf-zgVuxyHkHADUCWaCZePzcpvgleX_0ZUyTTIPMxRc-QzuuUJYk66dadh_-TtwM_jvz4m_nont96Zarqn1_Wy-f2yoZA1XDikMIbKx10QfWoIfo2GFU5IJWehgIqKEm2MiIrMmpjfYIxjbGbpyei_tLNuUy9jmOheM2pmniWPoaTwV7lh4u0s8h7Y-cS79Lx8N0utWrWiEpjQj6F-z1SAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126923660</pqid></control><display><type>article</type><title>Shock equation of state of LiH6 to 1.1 TPa</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Lazicki, A ; London, R A ; Coppari, F ; Erskine, D ; Whitley, H D ; Caspersen, K J ; Fratanduono, D E ; Morales, M A ; Celliers, P M ; Eggert, J H ; Millot, M ; Swift, D C ; Collins, G W ; Kucheyev, S O ; Castor, J I ; Nilsen, J</creator><creatorcontrib>Lazicki, A ; London, R A ; Coppari, F ; Erskine, D ; Whitley, H D ; Caspersen, K J ; Fratanduono, D E ; Morales, M A ; Celliers, P M ; Eggert, J H ; Millot, M ; Swift, D C ; Collins, G W ; Kucheyev, S O ; Castor, J I ; Nilsen, J ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Using laser-generated shock waves, we have measured pressure, density, and temperature of LiH on the principal Hugoniot between 260 and 1100 GPa (2.6–11 Mbar) and on a second-shock Hugoniot up to 1400 GPa to near fivefold compression, extending the maximum pressure reached in non-nuclear experiments by a factor of two. We observe the onset of metal-like reflectivity consistent with temperature-induced ionization of the Li 2s electron, and no sign of additional changes in ionization up to the maximum pressure. Our measurements are in good agreement with gas gun, Z-machine, and underground test data and are accurately described by quantum molecular dynamics simulations. The results confirm the validity of equation of state models built on an average-atom description of the electron-thermal contribution to the free energy and a density-dependent Grüneisen parameter to describe shock response of LiH over this pressure range.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Ab initio calculations ; Computer simulation ; Density ; Equations of state ; First-principles calculations in plasma physics ; Free energy ; Gruneisen parameter ; High-energy-density plasmas ; Hot dense plasma ; Hugoniot curves ; Ionization ; Laser techniques ; Molecular dynamics ; Optical interferometry ; Optical plasma measurements ; Plasma physics ; Plasma production &amp; heating by laser beams, laser-foil, laser-cluster ; Plasma production &amp; heating by shock waves &amp; compression ; Pressure effects ; Shock waves ; Temperature</subject><ispartof>Physical review. B, 2017-10, Vol.96 (13)</ispartof><rights>Copyright American Physical Society Oct 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1632378$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lazicki, A</creatorcontrib><creatorcontrib>London, R A</creatorcontrib><creatorcontrib>Coppari, F</creatorcontrib><creatorcontrib>Erskine, D</creatorcontrib><creatorcontrib>Whitley, H D</creatorcontrib><creatorcontrib>Caspersen, K J</creatorcontrib><creatorcontrib>Fratanduono, D E</creatorcontrib><creatorcontrib>Morales, M A</creatorcontrib><creatorcontrib>Celliers, P M</creatorcontrib><creatorcontrib>Eggert, J H</creatorcontrib><creatorcontrib>Millot, M</creatorcontrib><creatorcontrib>Swift, D C</creatorcontrib><creatorcontrib>Collins, G W</creatorcontrib><creatorcontrib>Kucheyev, S O</creatorcontrib><creatorcontrib>Castor, J I</creatorcontrib><creatorcontrib>Nilsen, J</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Shock equation of state of LiH6 to 1.1 TPa</title><title>Physical review. B</title><description>Using laser-generated shock waves, we have measured pressure, density, and temperature of LiH on the principal Hugoniot between 260 and 1100 GPa (2.6–11 Mbar) and on a second-shock Hugoniot up to 1400 GPa to near fivefold compression, extending the maximum pressure reached in non-nuclear experiments by a factor of two. We observe the onset of metal-like reflectivity consistent with temperature-induced ionization of the Li 2s electron, and no sign of additional changes in ionization up to the maximum pressure. Our measurements are in good agreement with gas gun, Z-machine, and underground test data and are accurately described by quantum molecular dynamics simulations. The results confirm the validity of equation of state models built on an average-atom description of the electron-thermal contribution to the free energy and a density-dependent Grüneisen parameter to describe shock response of LiH over this pressure range.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Ab initio calculations</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Equations of state</subject><subject>First-principles calculations in plasma physics</subject><subject>Free energy</subject><subject>Gruneisen parameter</subject><subject>High-energy-density plasmas</subject><subject>Hot dense plasma</subject><subject>Hugoniot curves</subject><subject>Ionization</subject><subject>Laser techniques</subject><subject>Molecular dynamics</subject><subject>Optical interferometry</subject><subject>Optical plasma measurements</subject><subject>Plasma physics</subject><subject>Plasma production &amp; heating by laser beams, laser-foil, laser-cluster</subject><subject>Plasma production &amp; heating by shock waves &amp; compression</subject><subject>Pressure effects</subject><subject>Shock waves</subject><subject>Temperature</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9jsFKAzEURYMoWGr_IehOGHmTTF7yllLUFgYUnP2QpG_oVJnYJv1_Wyqu7lkcDvdKzFSDVBEhXf-zgVuxyHkHADUCWaCZePzcpvgleX_0ZUyTTIPMxRc-QzuuUJYk66dadh_-TtwM_jvz4m_nont96Zarqn1_Wy-f2yoZA1XDikMIbKx10QfWoIfo2GFU5IJWehgIqKEm2MiIrMmpjfYIxjbGbpyei_tLNuUy9jmOheM2pmniWPoaTwV7lh4u0s8h7Y-cS79Lx8N0utWrWiEpjQj6F-z1SAQ</recordid><startdate>20171002</startdate><enddate>20171002</enddate><creator>Lazicki, A</creator><creator>London, R A</creator><creator>Coppari, F</creator><creator>Erskine, D</creator><creator>Whitley, H D</creator><creator>Caspersen, K J</creator><creator>Fratanduono, D E</creator><creator>Morales, M A</creator><creator>Celliers, P M</creator><creator>Eggert, J H</creator><creator>Millot, M</creator><creator>Swift, D C</creator><creator>Collins, G W</creator><creator>Kucheyev, S O</creator><creator>Castor, J I</creator><creator>Nilsen, J</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20171002</creationdate><title>Shock equation of state of LiH6 to 1.1 TPa</title><author>Lazicki, A ; London, R A ; Coppari, F ; Erskine, D ; Whitley, H D ; Caspersen, K J ; Fratanduono, D E ; Morales, M A ; Celliers, P M ; Eggert, J H ; Millot, M ; Swift, D C ; Collins, G W ; Kucheyev, S O ; Castor, J I ; Nilsen, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o550-4e2ebbbe5778cabe303fc8e86c298b323ff909494b7ce66e3982d3a6057457d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Ab initio calculations</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Equations of state</topic><topic>First-principles calculations in plasma physics</topic><topic>Free energy</topic><topic>Gruneisen parameter</topic><topic>High-energy-density plasmas</topic><topic>Hot dense plasma</topic><topic>Hugoniot curves</topic><topic>Ionization</topic><topic>Laser techniques</topic><topic>Molecular dynamics</topic><topic>Optical interferometry</topic><topic>Optical plasma measurements</topic><topic>Plasma physics</topic><topic>Plasma production &amp; heating by laser beams, laser-foil, laser-cluster</topic><topic>Plasma production &amp; heating by shock waves &amp; compression</topic><topic>Pressure effects</topic><topic>Shock waves</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazicki, A</creatorcontrib><creatorcontrib>London, R A</creatorcontrib><creatorcontrib>Coppari, F</creatorcontrib><creatorcontrib>Erskine, D</creatorcontrib><creatorcontrib>Whitley, H D</creatorcontrib><creatorcontrib>Caspersen, K J</creatorcontrib><creatorcontrib>Fratanduono, D E</creatorcontrib><creatorcontrib>Morales, M A</creatorcontrib><creatorcontrib>Celliers, P M</creatorcontrib><creatorcontrib>Eggert, J H</creatorcontrib><creatorcontrib>Millot, M</creatorcontrib><creatorcontrib>Swift, D C</creatorcontrib><creatorcontrib>Collins, G W</creatorcontrib><creatorcontrib>Kucheyev, S O</creatorcontrib><creatorcontrib>Castor, J I</creatorcontrib><creatorcontrib>Nilsen, J</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazicki, A</au><au>London, R A</au><au>Coppari, F</au><au>Erskine, D</au><au>Whitley, H D</au><au>Caspersen, K J</au><au>Fratanduono, D E</au><au>Morales, M A</au><au>Celliers, P M</au><au>Eggert, J H</au><au>Millot, M</au><au>Swift, D C</au><au>Collins, G W</au><au>Kucheyev, S O</au><au>Castor, J I</au><au>Nilsen, J</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock equation of state of LiH6 to 1.1 TPa</atitle><jtitle>Physical review. B</jtitle><date>2017-10-02</date><risdate>2017</risdate><volume>96</volume><issue>13</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Using laser-generated shock waves, we have measured pressure, density, and temperature of LiH on the principal Hugoniot between 260 and 1100 GPa (2.6–11 Mbar) and on a second-shock Hugoniot up to 1400 GPa to near fivefold compression, extending the maximum pressure reached in non-nuclear experiments by a factor of two. We observe the onset of metal-like reflectivity consistent with temperature-induced ionization of the Li 2s electron, and no sign of additional changes in ionization up to the maximum pressure. Our measurements are in good agreement with gas gun, Z-machine, and underground test data and are accurately described by quantum molecular dynamics simulations. The results confirm the validity of equation of state models built on an average-atom description of the electron-thermal contribution to the free energy and a density-dependent Grüneisen parameter to describe shock response of LiH over this pressure range.</abstract><cop>College Park</cop><pub>American Physical Society</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2017-10, Vol.96 (13)
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1632378
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Ab initio calculations
Computer simulation
Density
Equations of state
First-principles calculations in plasma physics
Free energy
Gruneisen parameter
High-energy-density plasmas
Hot dense plasma
Hugoniot curves
Ionization
Laser techniques
Molecular dynamics
Optical interferometry
Optical plasma measurements
Plasma physics
Plasma production & heating by laser beams, laser-foil, laser-cluster
Plasma production & heating by shock waves & compression
Pressure effects
Shock waves
Temperature
title Shock equation of state of LiH6 to 1.1 TPa
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock%20equation%20of%20state%20of%20LiH6%20to%201.1%20TPa&rft.jtitle=Physical%20review.%20B&rft.au=Lazicki,%20A&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2017-10-02&rft.volume=96&rft.issue=13&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/&rft_dat=%3Cproquest_osti_%3E2126923660%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o550-4e2ebbbe5778cabe303fc8e86c298b323ff909494b7ce66e3982d3a6057457d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2126923660&rft_id=info:pmid/&rfr_iscdi=true