Loading…
Solution Blowing Synthesis of Li-Conductive Ceramic Nanofibers
Solid state electrolytes (SSEs) offer great potential to enable high-performance and safe lithium (Li) batteries. However, the scale-up synthesis and processing of SSEs is a major challenge. In this work, three-dimensional networks of lithium lanthanum titanite (LLTO) nanofibers are produced through...
Saved in:
Published in: | ACS applied materials & interfaces 2020-04, Vol.12 (14), p.16200-16208 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solid state electrolytes (SSEs) offer great potential to enable high-performance and safe lithium (Li) batteries. However, the scale-up synthesis and processing of SSEs is a major challenge. In this work, three-dimensional networks of lithium lanthanum titanite (LLTO) nanofibers are produced through a scale-up technique based on solution blowing. Compared with the conventional electrospinning method, the solution blowing technique enables high-speed fabrication of SSEs (e.g., 15 times faster) with superior productivity and quality. Additionally, the room-temperature ionic conductivity of composite polymer electrolytes (CPEs) formed from solution-blown LLTO fibers is 70% higher than the ones formed from electrospun fibers (1.9 × 10 –4 vs 1.1 × 10–4 S cm–1 for 10 wt % LLTO fibers). Furthermore, the cyclability of the CPEs made from solution-blown fibers in the symmetric Li cell is more than 2.5 times that of the CPEs made from electrospun fibers. These comparisons show that solution-blown ion-conductive fibers hold great promise for applications in Li metal batteries. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b19851 |