Loading…
Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites
Abstract Grain boundaries play a key role in the performance of thin‐film optoelectronic devices and yet their effect in halide perovskite materials is still not understood. The biggest factor limiting progress is the inability to identify grain boundaries. Noncrystallographic techniques can misiden...
Saved in:
Published in: | Advanced materials (Weinheim) 2018-10, Vol.30 (52) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 52 |
container_start_page | |
container_title | Advanced materials (Weinheim) |
container_volume | 30 |
creator | Adhyaksa, Gede W. P. Brittman, Sarah Āboliņš, Haralds Lof, Andries Li, Xueying Keelor, Joel D. Luo, Yanqi Duevski, Teodor Heeren, Ron M. A. Ellis, Shane R. Fenning, David P. Garnett, Erik C. |
description | Abstract
Grain boundaries play a key role in the performance of thin‐film optoelectronic devices and yet their effect in halide perovskite materials is still not understood. The biggest factor limiting progress is the inability to identify grain boundaries. Noncrystallographic techniques can misidentify grain boundaries, leading to conflicting literature reports about their influence; however, the gold standard – electron backscatter diffraction (EBSD) – destroys halide perovskite thin films. Here, this problem is solved by using a solid‐state EBSD detector with 6000 times higher sensitivity than the traditional phosphor screen and camera. Correlating true grain size with photoluminescence lifetime, carrier diffusion length, and mobility shows that grain boundaries are not benign but have a recombination velocity of 1670 cm s
−1
, comparable to that of crystalline silicon. Amorphous grain boundaries are also observed that give rise to locally brighter photoluminescence intensity and longer lifetimes. This anomalous grain boundary character offers a possible explanation for the mysteriously long lifetime and record efficiency achieved in small grain halide perovskite thin films. It also suggests a new approach for passivating grain boundaries, independent of surface passivation, to lead to even better performance in optoelectronic devices. |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1632998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1632998</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_16329983</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRYMoWB__ENwX0ifNtlrt0oVdl5BMNVqnkImCf28WfoCryzkc7oxFSZEmcS5kMWeRkFkRyzKvlmxFdBdCyFKUEes6NODIKzQWr_wA3tknoFcjD4rXgDBYbQOenLLI6-mFRrkPb4YBtCceXKtGa4CfwU1velgPtGGLQY0E29-u2e7YXPZtPJG3PenQ6JueEMNFn5RZKmWV_RV9AW5GQjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Adhyaksa, Gede W. P. ; Brittman, Sarah ; Āboliņš, Haralds ; Lof, Andries ; Li, Xueying ; Keelor, Joel D. ; Luo, Yanqi ; Duevski, Teodor ; Heeren, Ron M. A. ; Ellis, Shane R. ; Fenning, David P. ; Garnett, Erik C.</creator><creatorcontrib>Adhyaksa, Gede W. P. ; Brittman, Sarah ; Āboliņš, Haralds ; Lof, Andries ; Li, Xueying ; Keelor, Joel D. ; Luo, Yanqi ; Duevski, Teodor ; Heeren, Ron M. A. ; Ellis, Shane R. ; Fenning, David P. ; Garnett, Erik C.</creatorcontrib><description>Abstract
Grain boundaries play a key role in the performance of thin‐film optoelectronic devices and yet their effect in halide perovskite materials is still not understood. The biggest factor limiting progress is the inability to identify grain boundaries. Noncrystallographic techniques can misidentify grain boundaries, leading to conflicting literature reports about their influence; however, the gold standard – electron backscatter diffraction (EBSD) – destroys halide perovskite thin films. Here, this problem is solved by using a solid‐state EBSD detector with 6000 times higher sensitivity than the traditional phosphor screen and camera. Correlating true grain size with photoluminescence lifetime, carrier diffusion length, and mobility shows that grain boundaries are not benign but have a recombination velocity of 1670 cm s
−1
, comparable to that of crystalline silicon. Amorphous grain boundaries are also observed that give rise to locally brighter photoluminescence intensity and longer lifetimes. This anomalous grain boundary character offers a possible explanation for the mysteriously long lifetime and record efficiency achieved in small grain halide perovskite thin films. It also suggests a new approach for passivating grain boundaries, independent of surface passivation, to lead to even better performance in optoelectronic devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><language>eng</language><publisher>Germany: Wiley Blackwell (John Wiley & Sons)</publisher><ispartof>Advanced materials (Weinheim), 2018-10, Vol.30 (52)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000291588326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1632998$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Adhyaksa, Gede W. P.</creatorcontrib><creatorcontrib>Brittman, Sarah</creatorcontrib><creatorcontrib>Āboliņš, Haralds</creatorcontrib><creatorcontrib>Lof, Andries</creatorcontrib><creatorcontrib>Li, Xueying</creatorcontrib><creatorcontrib>Keelor, Joel D.</creatorcontrib><creatorcontrib>Luo, Yanqi</creatorcontrib><creatorcontrib>Duevski, Teodor</creatorcontrib><creatorcontrib>Heeren, Ron M. A.</creatorcontrib><creatorcontrib>Ellis, Shane R.</creatorcontrib><creatorcontrib>Fenning, David P.</creatorcontrib><creatorcontrib>Garnett, Erik C.</creatorcontrib><title>Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites</title><title>Advanced materials (Weinheim)</title><description>Abstract
Grain boundaries play a key role in the performance of thin‐film optoelectronic devices and yet their effect in halide perovskite materials is still not understood. The biggest factor limiting progress is the inability to identify grain boundaries. Noncrystallographic techniques can misidentify grain boundaries, leading to conflicting literature reports about their influence; however, the gold standard – electron backscatter diffraction (EBSD) – destroys halide perovskite thin films. Here, this problem is solved by using a solid‐state EBSD detector with 6000 times higher sensitivity than the traditional phosphor screen and camera. Correlating true grain size with photoluminescence lifetime, carrier diffusion length, and mobility shows that grain boundaries are not benign but have a recombination velocity of 1670 cm s
−1
, comparable to that of crystalline silicon. Amorphous grain boundaries are also observed that give rise to locally brighter photoluminescence intensity and longer lifetimes. This anomalous grain boundary character offers a possible explanation for the mysteriously long lifetime and record efficiency achieved in small grain halide perovskite thin films. It also suggests a new approach for passivating grain boundaries, independent of surface passivation, to lead to even better performance in optoelectronic devices.</description><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNjMsKwjAQRYMoWB__ENwX0ifNtlrt0oVdl5BMNVqnkImCf28WfoCryzkc7oxFSZEmcS5kMWeRkFkRyzKvlmxFdBdCyFKUEes6NODIKzQWr_wA3tknoFcjD4rXgDBYbQOenLLI6-mFRrkPb4YBtCceXKtGa4CfwU1velgPtGGLQY0E29-u2e7YXPZtPJG3PenQ6JueEMNFn5RZKmWV_RV9AW5GQjw</recordid><startdate>20181026</startdate><enddate>20181026</enddate><creator>Adhyaksa, Gede W. P.</creator><creator>Brittman, Sarah</creator><creator>Āboliņš, Haralds</creator><creator>Lof, Andries</creator><creator>Li, Xueying</creator><creator>Keelor, Joel D.</creator><creator>Luo, Yanqi</creator><creator>Duevski, Teodor</creator><creator>Heeren, Ron M. A.</creator><creator>Ellis, Shane R.</creator><creator>Fenning, David P.</creator><creator>Garnett, Erik C.</creator><general>Wiley Blackwell (John Wiley & Sons)</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000291588326</orcidid></search><sort><creationdate>20181026</creationdate><title>Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites</title><author>Adhyaksa, Gede W. P. ; Brittman, Sarah ; Āboliņš, Haralds ; Lof, Andries ; Li, Xueying ; Keelor, Joel D. ; Luo, Yanqi ; Duevski, Teodor ; Heeren, Ron M. A. ; Ellis, Shane R. ; Fenning, David P. ; Garnett, Erik C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_16329983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhyaksa, Gede W. P.</creatorcontrib><creatorcontrib>Brittman, Sarah</creatorcontrib><creatorcontrib>Āboliņš, Haralds</creatorcontrib><creatorcontrib>Lof, Andries</creatorcontrib><creatorcontrib>Li, Xueying</creatorcontrib><creatorcontrib>Keelor, Joel D.</creatorcontrib><creatorcontrib>Luo, Yanqi</creatorcontrib><creatorcontrib>Duevski, Teodor</creatorcontrib><creatorcontrib>Heeren, Ron M. A.</creatorcontrib><creatorcontrib>Ellis, Shane R.</creatorcontrib><creatorcontrib>Fenning, David P.</creatorcontrib><creatorcontrib>Garnett, Erik C.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhyaksa, Gede W. P.</au><au>Brittman, Sarah</au><au>Āboliņš, Haralds</au><au>Lof, Andries</au><au>Li, Xueying</au><au>Keelor, Joel D.</au><au>Luo, Yanqi</au><au>Duevski, Teodor</au><au>Heeren, Ron M. A.</au><au>Ellis, Shane R.</au><au>Fenning, David P.</au><au>Garnett, Erik C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2018-10-26</date><risdate>2018</risdate><volume>30</volume><issue>52</issue><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Abstract
Grain boundaries play a key role in the performance of thin‐film optoelectronic devices and yet their effect in halide perovskite materials is still not understood. The biggest factor limiting progress is the inability to identify grain boundaries. Noncrystallographic techniques can misidentify grain boundaries, leading to conflicting literature reports about their influence; however, the gold standard – electron backscatter diffraction (EBSD) – destroys halide perovskite thin films. Here, this problem is solved by using a solid‐state EBSD detector with 6000 times higher sensitivity than the traditional phosphor screen and camera. Correlating true grain size with photoluminescence lifetime, carrier diffusion length, and mobility shows that grain boundaries are not benign but have a recombination velocity of 1670 cm s
−1
, comparable to that of crystalline silicon. Amorphous grain boundaries are also observed that give rise to locally brighter photoluminescence intensity and longer lifetimes. This anomalous grain boundary character offers a possible explanation for the mysteriously long lifetime and record efficiency achieved in small grain halide perovskite thin films. It also suggests a new approach for passivating grain boundaries, independent of surface passivation, to lead to even better performance in optoelectronic devices.</abstract><cop>Germany</cop><pub>Wiley Blackwell (John Wiley & Sons)</pub><orcidid>https://orcid.org/0000000291588326</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2018-10, Vol.30 (52) |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1632998 |
source | Wiley-Blackwell Read & Publish Collection |
title | Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Detrimental%20and%20Beneficial%20Grain%20Boundary%20Effects%20in%20Halide%20Perovskites&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Adhyaksa,%20Gede%20W.%20P.&rft.date=2018-10-26&rft.volume=30&rft.issue=52&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/&rft_dat=%3Costi%3E1632998%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_16329983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |