Loading…

Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites

Abstract Grain boundaries play a key role in the performance of thin‐film optoelectronic devices and yet their effect in halide perovskite materials is still not understood. The biggest factor limiting progress is the inability to identify grain boundaries. Noncrystallographic techniques can misiden...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2018-10, Vol.30 (52)
Main Authors: Adhyaksa, Gede W. P., Brittman, Sarah, Āboliņš, Haralds, Lof, Andries, Li, Xueying, Keelor, Joel D., Luo, Yanqi, Duevski, Teodor, Heeren, Ron M. A., Ellis, Shane R., Fenning, David P., Garnett, Erik C.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 52
container_start_page
container_title Advanced materials (Weinheim)
container_volume 30
creator Adhyaksa, Gede W. P.
Brittman, Sarah
Āboliņš, Haralds
Lof, Andries
Li, Xueying
Keelor, Joel D.
Luo, Yanqi
Duevski, Teodor
Heeren, Ron M. A.
Ellis, Shane R.
Fenning, David P.
Garnett, Erik C.
description Abstract Grain boundaries play a key role in the performance of thin‐film optoelectronic devices and yet their effect in halide perovskite materials is still not understood. The biggest factor limiting progress is the inability to identify grain boundaries. Noncrystallographic techniques can misidentify grain boundaries, leading to conflicting literature reports about their influence; however, the gold standard – electron backscatter diffraction (EBSD) – destroys halide perovskite thin films. Here, this problem is solved by using a solid‐state EBSD detector with 6000 times higher sensitivity than the traditional phosphor screen and camera. Correlating true grain size with photoluminescence lifetime, carrier diffusion length, and mobility shows that grain boundaries are not benign but have a recombination velocity of 1670 cm s −1 , comparable to that of crystalline silicon. Amorphous grain boundaries are also observed that give rise to locally brighter photoluminescence intensity and longer lifetimes. This anomalous grain boundary character offers a possible explanation for the mysteriously long lifetime and record efficiency achieved in small grain halide perovskite thin films. It also suggests a new approach for passivating grain boundaries, independent of surface passivation, to lead to even better performance in optoelectronic devices.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1632998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1632998</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_16329983</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRYMoWB__ENwX0ifNtlrt0oVdl5BMNVqnkImCf28WfoCryzkc7oxFSZEmcS5kMWeRkFkRyzKvlmxFdBdCyFKUEes6NODIKzQWr_wA3tknoFcjD4rXgDBYbQOenLLI6-mFRrkPb4YBtCceXKtGa4CfwU1velgPtGGLQY0E29-u2e7YXPZtPJG3PenQ6JueEMNFn5RZKmWV_RV9AW5GQjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Adhyaksa, Gede W. P. ; Brittman, Sarah ; Āboliņš, Haralds ; Lof, Andries ; Li, Xueying ; Keelor, Joel D. ; Luo, Yanqi ; Duevski, Teodor ; Heeren, Ron M. A. ; Ellis, Shane R. ; Fenning, David P. ; Garnett, Erik C.</creator><creatorcontrib>Adhyaksa, Gede W. P. ; Brittman, Sarah ; Āboliņš, Haralds ; Lof, Andries ; Li, Xueying ; Keelor, Joel D. ; Luo, Yanqi ; Duevski, Teodor ; Heeren, Ron M. A. ; Ellis, Shane R. ; Fenning, David P. ; Garnett, Erik C.</creatorcontrib><description>Abstract Grain boundaries play a key role in the performance of thin‐film optoelectronic devices and yet their effect in halide perovskite materials is still not understood. The biggest factor limiting progress is the inability to identify grain boundaries. Noncrystallographic techniques can misidentify grain boundaries, leading to conflicting literature reports about their influence; however, the gold standard – electron backscatter diffraction (EBSD) – destroys halide perovskite thin films. Here, this problem is solved by using a solid‐state EBSD detector with 6000 times higher sensitivity than the traditional phosphor screen and camera. Correlating true grain size with photoluminescence lifetime, carrier diffusion length, and mobility shows that grain boundaries are not benign but have a recombination velocity of 1670 cm s −1 , comparable to that of crystalline silicon. Amorphous grain boundaries are also observed that give rise to locally brighter photoluminescence intensity and longer lifetimes. This anomalous grain boundary character offers a possible explanation for the mysteriously long lifetime and record efficiency achieved in small grain halide perovskite thin films. It also suggests a new approach for passivating grain boundaries, independent of surface passivation, to lead to even better performance in optoelectronic devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><language>eng</language><publisher>Germany: Wiley Blackwell (John Wiley &amp; Sons)</publisher><ispartof>Advanced materials (Weinheim), 2018-10, Vol.30 (52)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000291588326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1632998$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Adhyaksa, Gede W. P.</creatorcontrib><creatorcontrib>Brittman, Sarah</creatorcontrib><creatorcontrib>Āboliņš, Haralds</creatorcontrib><creatorcontrib>Lof, Andries</creatorcontrib><creatorcontrib>Li, Xueying</creatorcontrib><creatorcontrib>Keelor, Joel D.</creatorcontrib><creatorcontrib>Luo, Yanqi</creatorcontrib><creatorcontrib>Duevski, Teodor</creatorcontrib><creatorcontrib>Heeren, Ron M. A.</creatorcontrib><creatorcontrib>Ellis, Shane R.</creatorcontrib><creatorcontrib>Fenning, David P.</creatorcontrib><creatorcontrib>Garnett, Erik C.</creatorcontrib><title>Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites</title><title>Advanced materials (Weinheim)</title><description>Abstract Grain boundaries play a key role in the performance of thin‐film optoelectronic devices and yet their effect in halide perovskite materials is still not understood. The biggest factor limiting progress is the inability to identify grain boundaries. Noncrystallographic techniques can misidentify grain boundaries, leading to conflicting literature reports about their influence; however, the gold standard – electron backscatter diffraction (EBSD) – destroys halide perovskite thin films. Here, this problem is solved by using a solid‐state EBSD detector with 6000 times higher sensitivity than the traditional phosphor screen and camera. Correlating true grain size with photoluminescence lifetime, carrier diffusion length, and mobility shows that grain boundaries are not benign but have a recombination velocity of 1670 cm s −1 , comparable to that of crystalline silicon. Amorphous grain boundaries are also observed that give rise to locally brighter photoluminescence intensity and longer lifetimes. This anomalous grain boundary character offers a possible explanation for the mysteriously long lifetime and record efficiency achieved in small grain halide perovskite thin films. It also suggests a new approach for passivating grain boundaries, independent of surface passivation, to lead to even better performance in optoelectronic devices.</description><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNjMsKwjAQRYMoWB__ENwX0ifNtlrt0oVdl5BMNVqnkImCf28WfoCryzkc7oxFSZEmcS5kMWeRkFkRyzKvlmxFdBdCyFKUEes6NODIKzQWr_wA3tknoFcjD4rXgDBYbQOenLLI6-mFRrkPb4YBtCceXKtGa4CfwU1velgPtGGLQY0E29-u2e7YXPZtPJG3PenQ6JueEMNFn5RZKmWV_RV9AW5GQjw</recordid><startdate>20181026</startdate><enddate>20181026</enddate><creator>Adhyaksa, Gede W. P.</creator><creator>Brittman, Sarah</creator><creator>Āboliņš, Haralds</creator><creator>Lof, Andries</creator><creator>Li, Xueying</creator><creator>Keelor, Joel D.</creator><creator>Luo, Yanqi</creator><creator>Duevski, Teodor</creator><creator>Heeren, Ron M. A.</creator><creator>Ellis, Shane R.</creator><creator>Fenning, David P.</creator><creator>Garnett, Erik C.</creator><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000291588326</orcidid></search><sort><creationdate>20181026</creationdate><title>Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites</title><author>Adhyaksa, Gede W. P. ; Brittman, Sarah ; Āboliņš, Haralds ; Lof, Andries ; Li, Xueying ; Keelor, Joel D. ; Luo, Yanqi ; Duevski, Teodor ; Heeren, Ron M. A. ; Ellis, Shane R. ; Fenning, David P. ; Garnett, Erik C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_16329983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhyaksa, Gede W. P.</creatorcontrib><creatorcontrib>Brittman, Sarah</creatorcontrib><creatorcontrib>Āboliņš, Haralds</creatorcontrib><creatorcontrib>Lof, Andries</creatorcontrib><creatorcontrib>Li, Xueying</creatorcontrib><creatorcontrib>Keelor, Joel D.</creatorcontrib><creatorcontrib>Luo, Yanqi</creatorcontrib><creatorcontrib>Duevski, Teodor</creatorcontrib><creatorcontrib>Heeren, Ron M. A.</creatorcontrib><creatorcontrib>Ellis, Shane R.</creatorcontrib><creatorcontrib>Fenning, David P.</creatorcontrib><creatorcontrib>Garnett, Erik C.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhyaksa, Gede W. P.</au><au>Brittman, Sarah</au><au>Āboliņš, Haralds</au><au>Lof, Andries</au><au>Li, Xueying</au><au>Keelor, Joel D.</au><au>Luo, Yanqi</au><au>Duevski, Teodor</au><au>Heeren, Ron M. A.</au><au>Ellis, Shane R.</au><au>Fenning, David P.</au><au>Garnett, Erik C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2018-10-26</date><risdate>2018</risdate><volume>30</volume><issue>52</issue><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Abstract Grain boundaries play a key role in the performance of thin‐film optoelectronic devices and yet their effect in halide perovskite materials is still not understood. The biggest factor limiting progress is the inability to identify grain boundaries. Noncrystallographic techniques can misidentify grain boundaries, leading to conflicting literature reports about their influence; however, the gold standard – electron backscatter diffraction (EBSD) – destroys halide perovskite thin films. Here, this problem is solved by using a solid‐state EBSD detector with 6000 times higher sensitivity than the traditional phosphor screen and camera. Correlating true grain size with photoluminescence lifetime, carrier diffusion length, and mobility shows that grain boundaries are not benign but have a recombination velocity of 1670 cm s −1 , comparable to that of crystalline silicon. Amorphous grain boundaries are also observed that give rise to locally brighter photoluminescence intensity and longer lifetimes. This anomalous grain boundary character offers a possible explanation for the mysteriously long lifetime and record efficiency achieved in small grain halide perovskite thin films. It also suggests a new approach for passivating grain boundaries, independent of surface passivation, to lead to even better performance in optoelectronic devices.</abstract><cop>Germany</cop><pub>Wiley Blackwell (John Wiley &amp; Sons)</pub><orcidid>https://orcid.org/0000000291588326</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-10, Vol.30 (52)
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1632998
source Wiley-Blackwell Read & Publish Collection
title Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Detrimental%20and%20Beneficial%20Grain%20Boundary%20Effects%20in%20Halide%20Perovskites&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Adhyaksa,%20Gede%20W.%20P.&rft.date=2018-10-26&rft.volume=30&rft.issue=52&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/&rft_dat=%3Costi%3E1632998%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_16329983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true