Loading…

Foliar functional traits from imaging spectroscopy across biomes in eastern North America

• Foliar functional traits are widely used to characterize leaf and canopy properties that drive ecosystem processes and to infer physiological processes in Earth system models. Imaging spectroscopy provides great potential to map foliar traits to characterize continuous functional variation and div...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2020-10, Vol.228 (2), p.494-511
Main Authors: Wang, Zhihui, Chlus, Adam, Geygan, Ryan, Ye, Zhiwei, Zheng, Ting, Singh, Aditya, Couture, John J., Cavender-Bares, Jeannine, Kruger, Eric L., Townsend, Philip A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4371-48be598fdac67d7eb534f730c7b12a4b5752bd436913ebfbb39f78ac1d4a3c843
cites cdi_FETCH-LOGICAL-c4371-48be598fdac67d7eb534f730c7b12a4b5752bd436913ebfbb39f78ac1d4a3c843
container_end_page 511
container_issue 2
container_start_page 494
container_title The New phytologist
container_volume 228
creator Wang, Zhihui
Chlus, Adam
Geygan, Ryan
Ye, Zhiwei
Zheng, Ting
Singh, Aditya
Couture, John J.
Cavender-Bares, Jeannine
Kruger, Eric L.
Townsend, Philip A.
description • Foliar functional traits are widely used to characterize leaf and canopy properties that drive ecosystem processes and to infer physiological processes in Earth system models. Imaging spectroscopy provides great potential to map foliar traits to characterize continuous functional variation and diversity, but few studies have demonstrated consistent methods for mapping multiple traits across biomes. • With airborne imaging spectroscopy data and field data from 19 sites, we developed trait models using partial least squares regression, and mapped 26 foliar traits in seven NEON (National Ecological Observatory Network) ecoregions (domains) including temperate and subtropical forests and grasslands of eastern North America. • Model validation accuracy varied among traits (normalized root mean squared error, 9.1– 19.4%; coefficient of determination, 0.28–0.82), with phenolic concentration, leaf mass per area and equivalent water thickness performing best across domains. Across all trait maps, 90% of vegetated pixels had reasonable values for one trait, and 28–81% provided high confidence for multiple traits concurrently. • Maps of 26 traits and their uncertainties for eastern US NEON sites are available for download, and are being expanded to the western United States and tundra/boreal zone. These data enable better understanding of trait variations and relationships over large areas, calibration of ecosystem models, and assessment of continental-scale functional diversity.
doi_str_mv 10.1111/nph.16711
format article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1634258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26968104</jstor_id><sourcerecordid>26968104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4371-48be598fdac67d7eb534f730c7b12a4b5752bd436913ebfbb39f78ac1d4a3c843</originalsourceid><addsrcrecordid>eNp10U9vFCEYBnBiNHZbPfgBNMRe9DAt_waYY9NYa9JUD5roiQDDdNnMwAhMzH572U7bg4lc4PB7n5D3AeANRme4nvMwb88wFxg_AxvMeNdITMVzsEGIyIYz_vMIHOe8Qwh1LScvwREljNOOiA34dRVHrxMclmCLj0GPsCTtS4ZDihP0k77z4Q7m2dmSYrZx3kNt6ytD4-PkMvQBOp2LSwHexlS28GJyyVv9CrwY9Jjd64f7BPy4-vT98rq5-fr5y-XFTWMZFbhh0ri2k0OvLRe9cKalbBAUWWEw0cy0oiWmZ5R3mDozGEO7QUhtcc80tZLRE_B-zY25eJWtL85ubQyh_lhhThlpZUUfVjSn-HtxuajJZ-vGUQcXl6wIQxJ3XUt4paf_0F1cUl3MQbGWtELIg_q4qvtdJDeoOdVlpb3CSB1KUbUUdV9Kte8eEhczuf5JPrZQwfkK_vjR7f-fpG6_XT9Gvl0ndrnE9DRBeMclRoz-BVzdn48</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445257786</pqid></control><display><type>article</type><title>Foliar functional traits from imaging spectroscopy across biomes in eastern North America</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Wang, Zhihui ; Chlus, Adam ; Geygan, Ryan ; Ye, Zhiwei ; Zheng, Ting ; Singh, Aditya ; Couture, John J. ; Cavender-Bares, Jeannine ; Kruger, Eric L. ; Townsend, Philip A.</creator><creatorcontrib>Wang, Zhihui ; Chlus, Adam ; Geygan, Ryan ; Ye, Zhiwei ; Zheng, Ting ; Singh, Aditya ; Couture, John J. ; Cavender-Bares, Jeannine ; Kruger, Eric L. ; Townsend, Philip A.</creatorcontrib><description>• Foliar functional traits are widely used to characterize leaf and canopy properties that drive ecosystem processes and to infer physiological processes in Earth system models. Imaging spectroscopy provides great potential to map foliar traits to characterize continuous functional variation and diversity, but few studies have demonstrated consistent methods for mapping multiple traits across biomes. • With airborne imaging spectroscopy data and field data from 19 sites, we developed trait models using partial least squares regression, and mapped 26 foliar traits in seven NEON (National Ecological Observatory Network) ecoregions (domains) including temperate and subtropical forests and grasslands of eastern North America. • Model validation accuracy varied among traits (normalized root mean squared error, 9.1– 19.4%; coefficient of determination, 0.28–0.82), with phenolic concentration, leaf mass per area and equivalent water thickness performing best across domains. Across all trait maps, 90% of vegetated pixels had reasonable values for one trait, and 28–81% provided high confidence for multiple traits concurrently. • Maps of 26 traits and their uncertainties for eastern US NEON sites are available for download, and are being expanded to the western United States and tundra/boreal zone. These data enable better understanding of trait variations and relationships over large areas, calibration of ecosystem models, and assessment of continental-scale functional diversity.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16711</identifier><identifier>PMID: 32463927</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Analytical methods ; Continuity (mathematics) ; Domains ; Ecosystem ; Ecosystem assessment ; Ecosystem models ; ecosystem processes ; Environment models ; foliar functional traits ; Forests ; Grasslands ; Imaging ; imaging spectroscopy ; Imaging techniques ; Leaves ; Mapping ; Model accuracy ; NEON ; North America ; Phenolic compounds ; Phenols ; Plant cover ; Plant Leaves ; Regression analysis ; Spectroscopy ; Spectrum Analysis ; trait map database ; Tropical forests ; Tundra</subject><ispartof>The New phytologist, 2020-10, Vol.228 (2), p.494-511</ispartof><rights>2020 The Authors © 2020 New Phytologist Trust</rights><rights>2020 The Authors. New Phytologist © 2020 New Phytologist Trust</rights><rights>2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</rights><rights>Copyright © 2020 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4371-48be598fdac67d7eb534f730c7b12a4b5752bd436913ebfbb39f78ac1d4a3c843</citedby><cites>FETCH-LOGICAL-c4371-48be598fdac67d7eb534f730c7b12a4b5752bd436913ebfbb39f78ac1d4a3c843</cites><orcidid>0000-0003-4784-4537 ; 0000-0001-5559-9151 ; 0000-0003-3375-9630 ; 0000-0003-1064-7820 ; 0000-0003-4728-6627 ; 0000-0001-6719-9956 ; 0000-0003-2463-9231 ; 0000-0001-7003-8774 ; 0000-0001-5673-7034 ; 0000000347844537 ; 0000000156737034 ; 0000000170038774 ; 0000000347286627 ; 0000000167199956 ; 0000000324639231 ; 0000000155599151 ; 0000000333759630 ; 0000000310647820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26968104$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26968104$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,58236,58469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32463927$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1634258$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhihui</creatorcontrib><creatorcontrib>Chlus, Adam</creatorcontrib><creatorcontrib>Geygan, Ryan</creatorcontrib><creatorcontrib>Ye, Zhiwei</creatorcontrib><creatorcontrib>Zheng, Ting</creatorcontrib><creatorcontrib>Singh, Aditya</creatorcontrib><creatorcontrib>Couture, John J.</creatorcontrib><creatorcontrib>Cavender-Bares, Jeannine</creatorcontrib><creatorcontrib>Kruger, Eric L.</creatorcontrib><creatorcontrib>Townsend, Philip A.</creatorcontrib><title>Foliar functional traits from imaging spectroscopy across biomes in eastern North America</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• Foliar functional traits are widely used to characterize leaf and canopy properties that drive ecosystem processes and to infer physiological processes in Earth system models. Imaging spectroscopy provides great potential to map foliar traits to characterize continuous functional variation and diversity, but few studies have demonstrated consistent methods for mapping multiple traits across biomes. • With airborne imaging spectroscopy data and field data from 19 sites, we developed trait models using partial least squares regression, and mapped 26 foliar traits in seven NEON (National Ecological Observatory Network) ecoregions (domains) including temperate and subtropical forests and grasslands of eastern North America. • Model validation accuracy varied among traits (normalized root mean squared error, 9.1– 19.4%; coefficient of determination, 0.28–0.82), with phenolic concentration, leaf mass per area and equivalent water thickness performing best across domains. Across all trait maps, 90% of vegetated pixels had reasonable values for one trait, and 28–81% provided high confidence for multiple traits concurrently. • Maps of 26 traits and their uncertainties for eastern US NEON sites are available for download, and are being expanded to the western United States and tundra/boreal zone. These data enable better understanding of trait variations and relationships over large areas, calibration of ecosystem models, and assessment of continental-scale functional diversity.</description><subject>Analytical methods</subject><subject>Continuity (mathematics)</subject><subject>Domains</subject><subject>Ecosystem</subject><subject>Ecosystem assessment</subject><subject>Ecosystem models</subject><subject>ecosystem processes</subject><subject>Environment models</subject><subject>foliar functional traits</subject><subject>Forests</subject><subject>Grasslands</subject><subject>Imaging</subject><subject>imaging spectroscopy</subject><subject>Imaging techniques</subject><subject>Leaves</subject><subject>Mapping</subject><subject>Model accuracy</subject><subject>NEON</subject><subject>North America</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Plant cover</subject><subject>Plant Leaves</subject><subject>Regression analysis</subject><subject>Spectroscopy</subject><subject>Spectrum Analysis</subject><subject>trait map database</subject><subject>Tropical forests</subject><subject>Tundra</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10U9vFCEYBnBiNHZbPfgBNMRe9DAt_waYY9NYa9JUD5roiQDDdNnMwAhMzH572U7bg4lc4PB7n5D3AeANRme4nvMwb88wFxg_AxvMeNdITMVzsEGIyIYz_vMIHOe8Qwh1LScvwREljNOOiA34dRVHrxMclmCLj0GPsCTtS4ZDihP0k77z4Q7m2dmSYrZx3kNt6ytD4-PkMvQBOp2LSwHexlS28GJyyVv9CrwY9Jjd64f7BPy4-vT98rq5-fr5y-XFTWMZFbhh0ri2k0OvLRe9cKalbBAUWWEw0cy0oiWmZ5R3mDozGEO7QUhtcc80tZLRE_B-zY25eJWtL85ubQyh_lhhThlpZUUfVjSn-HtxuajJZ-vGUQcXl6wIQxJ3XUt4paf_0F1cUl3MQbGWtELIg_q4qvtdJDeoOdVlpb3CSB1KUbUUdV9Kte8eEhczuf5JPrZQwfkK_vjR7f-fpG6_XT9Gvl0ndrnE9DRBeMclRoz-BVzdn48</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Wang, Zhihui</creator><creator>Chlus, Adam</creator><creator>Geygan, Ryan</creator><creator>Ye, Zhiwei</creator><creator>Zheng, Ting</creator><creator>Singh, Aditya</creator><creator>Couture, John J.</creator><creator>Cavender-Bares, Jeannine</creator><creator>Kruger, Eric L.</creator><creator>Townsend, Philip A.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>Wiley-Blackwell</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4784-4537</orcidid><orcidid>https://orcid.org/0000-0001-5559-9151</orcidid><orcidid>https://orcid.org/0000-0003-3375-9630</orcidid><orcidid>https://orcid.org/0000-0003-1064-7820</orcidid><orcidid>https://orcid.org/0000-0003-4728-6627</orcidid><orcidid>https://orcid.org/0000-0001-6719-9956</orcidid><orcidid>https://orcid.org/0000-0003-2463-9231</orcidid><orcidid>https://orcid.org/0000-0001-7003-8774</orcidid><orcidid>https://orcid.org/0000-0001-5673-7034</orcidid><orcidid>https://orcid.org/0000000347844537</orcidid><orcidid>https://orcid.org/0000000156737034</orcidid><orcidid>https://orcid.org/0000000170038774</orcidid><orcidid>https://orcid.org/0000000347286627</orcidid><orcidid>https://orcid.org/0000000167199956</orcidid><orcidid>https://orcid.org/0000000324639231</orcidid><orcidid>https://orcid.org/0000000155599151</orcidid><orcidid>https://orcid.org/0000000333759630</orcidid><orcidid>https://orcid.org/0000000310647820</orcidid></search><sort><creationdate>202010</creationdate><title>Foliar functional traits from imaging spectroscopy across biomes in eastern North America</title><author>Wang, Zhihui ; Chlus, Adam ; Geygan, Ryan ; Ye, Zhiwei ; Zheng, Ting ; Singh, Aditya ; Couture, John J. ; Cavender-Bares, Jeannine ; Kruger, Eric L. ; Townsend, Philip A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4371-48be598fdac67d7eb534f730c7b12a4b5752bd436913ebfbb39f78ac1d4a3c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical methods</topic><topic>Continuity (mathematics)</topic><topic>Domains</topic><topic>Ecosystem</topic><topic>Ecosystem assessment</topic><topic>Ecosystem models</topic><topic>ecosystem processes</topic><topic>Environment models</topic><topic>foliar functional traits</topic><topic>Forests</topic><topic>Grasslands</topic><topic>Imaging</topic><topic>imaging spectroscopy</topic><topic>Imaging techniques</topic><topic>Leaves</topic><topic>Mapping</topic><topic>Model accuracy</topic><topic>NEON</topic><topic>North America</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Plant cover</topic><topic>Plant Leaves</topic><topic>Regression analysis</topic><topic>Spectroscopy</topic><topic>Spectrum Analysis</topic><topic>trait map database</topic><topic>Tropical forests</topic><topic>Tundra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhihui</creatorcontrib><creatorcontrib>Chlus, Adam</creatorcontrib><creatorcontrib>Geygan, Ryan</creatorcontrib><creatorcontrib>Ye, Zhiwei</creatorcontrib><creatorcontrib>Zheng, Ting</creatorcontrib><creatorcontrib>Singh, Aditya</creatorcontrib><creatorcontrib>Couture, John J.</creatorcontrib><creatorcontrib>Cavender-Bares, Jeannine</creatorcontrib><creatorcontrib>Kruger, Eric L.</creatorcontrib><creatorcontrib>Townsend, Philip A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhihui</au><au>Chlus, Adam</au><au>Geygan, Ryan</au><au>Ye, Zhiwei</au><au>Zheng, Ting</au><au>Singh, Aditya</au><au>Couture, John J.</au><au>Cavender-Bares, Jeannine</au><au>Kruger, Eric L.</au><au>Townsend, Philip A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foliar functional traits from imaging spectroscopy across biomes in eastern North America</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2020-10</date><risdate>2020</risdate><volume>228</volume><issue>2</issue><spage>494</spage><epage>511</epage><pages>494-511</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• Foliar functional traits are widely used to characterize leaf and canopy properties that drive ecosystem processes and to infer physiological processes in Earth system models. Imaging spectroscopy provides great potential to map foliar traits to characterize continuous functional variation and diversity, but few studies have demonstrated consistent methods for mapping multiple traits across biomes. • With airborne imaging spectroscopy data and field data from 19 sites, we developed trait models using partial least squares regression, and mapped 26 foliar traits in seven NEON (National Ecological Observatory Network) ecoregions (domains) including temperate and subtropical forests and grasslands of eastern North America. • Model validation accuracy varied among traits (normalized root mean squared error, 9.1– 19.4%; coefficient of determination, 0.28–0.82), with phenolic concentration, leaf mass per area and equivalent water thickness performing best across domains. Across all trait maps, 90% of vegetated pixels had reasonable values for one trait, and 28–81% provided high confidence for multiple traits concurrently. • Maps of 26 traits and their uncertainties for eastern US NEON sites are available for download, and are being expanded to the western United States and tundra/boreal zone. These data enable better understanding of trait variations and relationships over large areas, calibration of ecosystem models, and assessment of continental-scale functional diversity.</abstract><cop>England</cop><pub>Wiley</pub><pmid>32463927</pmid><doi>10.1111/nph.16711</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4784-4537</orcidid><orcidid>https://orcid.org/0000-0001-5559-9151</orcidid><orcidid>https://orcid.org/0000-0003-3375-9630</orcidid><orcidid>https://orcid.org/0000-0003-1064-7820</orcidid><orcidid>https://orcid.org/0000-0003-4728-6627</orcidid><orcidid>https://orcid.org/0000-0001-6719-9956</orcidid><orcidid>https://orcid.org/0000-0003-2463-9231</orcidid><orcidid>https://orcid.org/0000-0001-7003-8774</orcidid><orcidid>https://orcid.org/0000-0001-5673-7034</orcidid><orcidid>https://orcid.org/0000000347844537</orcidid><orcidid>https://orcid.org/0000000156737034</orcidid><orcidid>https://orcid.org/0000000170038774</orcidid><orcidid>https://orcid.org/0000000347286627</orcidid><orcidid>https://orcid.org/0000000167199956</orcidid><orcidid>https://orcid.org/0000000324639231</orcidid><orcidid>https://orcid.org/0000000155599151</orcidid><orcidid>https://orcid.org/0000000333759630</orcidid><orcidid>https://orcid.org/0000000310647820</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2020-10, Vol.228 (2), p.494-511
issn 0028-646X
1469-8137
language eng
recordid cdi_osti_scitechconnect_1634258
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list); JSTOR Archival Journals and Primary Sources Collection
subjects Analytical methods
Continuity (mathematics)
Domains
Ecosystem
Ecosystem assessment
Ecosystem models
ecosystem processes
Environment models
foliar functional traits
Forests
Grasslands
Imaging
imaging spectroscopy
Imaging techniques
Leaves
Mapping
Model accuracy
NEON
North America
Phenolic compounds
Phenols
Plant cover
Plant Leaves
Regression analysis
Spectroscopy
Spectrum Analysis
trait map database
Tropical forests
Tundra
title Foliar functional traits from imaging spectroscopy across biomes in eastern North America
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foliar%20functional%20traits%20from%20imaging%20spectroscopy%20across%20biomes%20in%20eastern%20North%20America&rft.jtitle=The%20New%20phytologist&rft.au=Wang,%20Zhihui&rft.date=2020-10&rft.volume=228&rft.issue=2&rft.spage=494&rft.epage=511&rft.pages=494-511&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16711&rft_dat=%3Cjstor_osti_%3E26968104%3C/jstor_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4371-48be598fdac67d7eb534f730c7b12a4b5752bd436913ebfbb39f78ac1d4a3c843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2445257786&rft_id=info:pmid/32463927&rft_jstor_id=26968104&rfr_iscdi=true