Loading…

The effect of submicron grain size on thermal stability and mechanical properties of high‐entropy carbide ceramics

(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramics (HEC) with a submicron grain size of 400 to 600 nm were fabricated by spark plasma sintering using a two‐step sintering process. Both X‐ray and neutron diffractions confirmed the formation of single‐phase with rock salt structure in the as‐fabricate...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2020-08, Vol.103 (8), p.4463-4472
Main Authors: Wang, Fei, Zhang, Xiang, Yan, Xueliang, Lu, Yongfeng, Nastasi, Michael, Chen, Yan, Cui, Bai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramics (HEC) with a submicron grain size of 400 to 600 nm were fabricated by spark plasma sintering using a two‐step sintering process. Both X‐ray and neutron diffractions confirmed the formation of single‐phase with rock salt structure in the as‐fabricated (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C samples. The effect of submicron grain size on the thermal stability and mechanical properties of HEC was investigated. The grain growth kinetics in the fine‐grained HEC was small at 1300 and 1600°C, suggesting high thermal stability that was possibly related to the compositional complexity and sluggish diffusion in HEC. Compared to the coarse‐grain HEC with a grain size of 16.5 µm, the bending strength and fracture toughness of fine‐grained HEC were 25% and 20% higher respectively. The improvement of mechanical properties in fine‐grained HEC may be attributed to micromechanistic mechanisms such as crack deflection.
ISSN:0002-7820
1551-2916
DOI:10.1111/jace.17103