Loading…
Electrode microstructure controls localized electronic impedance in Li-ion batteries
Substantial heterogeneity and defects in lithium-ion battery films can be a cause of material and battery failure. Although non-uniformity has been observed previously, the physical origin of electronic impedance non-uniformities in cathode materials has not been well-studied. We show that the local...
Saved in:
Published in: | Electrochimica acta 2019-02, Vol.297 (C), p.820-825 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-8f9f6ee100cd9ffd7bd831c3bf7bfde06c17ad508d07385e5c949df97b543a373 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-8f9f6ee100cd9ffd7bd831c3bf7bfde06c17ad508d07385e5c949df97b543a373 |
container_end_page | 825 |
container_issue | C |
container_start_page | 820 |
container_title | Electrochimica acta |
container_volume | 297 |
creator | Vogel, John E. Forouzan, Mehdi M. Hardy, Emilee E. Crawford, Sean T. Wheeler, Dean R. Mazzeo, Brian A. |
description | Substantial heterogeneity and defects in lithium-ion battery films can be a cause of material and battery failure. Although non-uniformity has been observed previously, the physical origin of electronic impedance non-uniformities in cathode materials has not been well-studied. We show that the local microscopic structure of materials strongly affects the resulting local impedance as measured by a micro-four-line probe, demonstrates large variation, and that these variations occur over sub-millimeter and larger distances on two different commercial cathode materials. These experimental results are further compared to modeled electronic and ionic transport pathways through the observed structure. By elucidating the extent and origins of heterogeneity in battery electrode films we provide a key principle through which batteries can be optimally designed to increase their safety, energy density, power, and longevity. |
doi_str_mv | 10.1016/j.electacta.2018.11.204 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1635814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468618326884</els_id><sourcerecordid>2184094948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-8f9f6ee100cd9ffd7bd831c3bf7bfde06c17ad508d07385e5c949df97b543a373</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BoueWzObtEmPy7L-gQUv6zmkyQSzdNs1aQX99KZUvAoDD4Y3j988Qm6BFkChejgU2KIZdJpiRUEWAEn5GVmAFCxnsqzPyYJSYDmvZHVJrmI8UEpFJeiC7LfTcegtZkdvQh-HMJphDJiZvkv7NmZtb3Trv9FmOHs7bzJ_PKHVncHMd9nO577vskYPAwaP8ZpcON1GvPnVJXl73O43z_nu9ells97lhpfVkEtXuwoRKDW2ds6KxkoGhjVONM4irQwIbUsqLRXpDSxNzWvratGUnGkm2JLczbkJ26to_IDmPXF3CVNBxUoJPJnuZ9Mp9B8jxkEd-jF0iUutQHKaMrlMLjG7pg5iQKdOwR91-FJA1dSzOqi_ntXUswJIOuWv50tMn356DBMIpmasDxOH7f2_GT-PP4wj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184094948</pqid></control><display><type>article</type><title>Electrode microstructure controls localized electronic impedance in Li-ion batteries</title><source>ScienceDirect Journals</source><creator>Vogel, John E. ; Forouzan, Mehdi M. ; Hardy, Emilee E. ; Crawford, Sean T. ; Wheeler, Dean R. ; Mazzeo, Brian A.</creator><creatorcontrib>Vogel, John E. ; Forouzan, Mehdi M. ; Hardy, Emilee E. ; Crawford, Sean T. ; Wheeler, Dean R. ; Mazzeo, Brian A.</creatorcontrib><description>Substantial heterogeneity and defects in lithium-ion battery films can be a cause of material and battery failure. Although non-uniformity has been observed previously, the physical origin of electronic impedance non-uniformities in cathode materials has not been well-studied. We show that the local microscopic structure of materials strongly affects the resulting local impedance as measured by a micro-four-line probe, demonstrates large variation, and that these variations occur over sub-millimeter and larger distances on two different commercial cathode materials. These experimental results are further compared to modeled electronic and ionic transport pathways through the observed structure. By elucidating the extent and origins of heterogeneity in battery electrode films we provide a key principle through which batteries can be optimally designed to increase their safety, energy density, power, and longevity.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2018.11.204</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cathodes ; Electrode materials ; Electrodes ; Electronic conductivity ; Flux density ; Heterogeneity ; Impedance ; Ionic conductivity ; Li-ion battery ; Lithium ; Lithium-ion batteries ; Microstructure ; Nonuniformity ; Rechargeable batteries</subject><ispartof>Electrochimica acta, 2019-02, Vol.297 (C), p.820-825</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 20, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-8f9f6ee100cd9ffd7bd831c3bf7bfde06c17ad508d07385e5c949df97b543a373</citedby><cites>FETCH-LOGICAL-c456t-8f9f6ee100cd9ffd7bd831c3bf7bfde06c17ad508d07385e5c949df97b543a373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1635814$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vogel, John E.</creatorcontrib><creatorcontrib>Forouzan, Mehdi M.</creatorcontrib><creatorcontrib>Hardy, Emilee E.</creatorcontrib><creatorcontrib>Crawford, Sean T.</creatorcontrib><creatorcontrib>Wheeler, Dean R.</creatorcontrib><creatorcontrib>Mazzeo, Brian A.</creatorcontrib><title>Electrode microstructure controls localized electronic impedance in Li-ion batteries</title><title>Electrochimica acta</title><description>Substantial heterogeneity and defects in lithium-ion battery films can be a cause of material and battery failure. Although non-uniformity has been observed previously, the physical origin of electronic impedance non-uniformities in cathode materials has not been well-studied. We show that the local microscopic structure of materials strongly affects the resulting local impedance as measured by a micro-four-line probe, demonstrates large variation, and that these variations occur over sub-millimeter and larger distances on two different commercial cathode materials. These experimental results are further compared to modeled electronic and ionic transport pathways through the observed structure. By elucidating the extent and origins of heterogeneity in battery electrode films we provide a key principle through which batteries can be optimally designed to increase their safety, energy density, power, and longevity.</description><subject>Cathodes</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electronic conductivity</subject><subject>Flux density</subject><subject>Heterogeneity</subject><subject>Impedance</subject><subject>Ionic conductivity</subject><subject>Li-ion battery</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Microstructure</subject><subject>Nonuniformity</subject><subject>Rechargeable batteries</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BoueWzObtEmPy7L-gQUv6zmkyQSzdNs1aQX99KZUvAoDD4Y3j988Qm6BFkChejgU2KIZdJpiRUEWAEn5GVmAFCxnsqzPyYJSYDmvZHVJrmI8UEpFJeiC7LfTcegtZkdvQh-HMJphDJiZvkv7NmZtb3Trv9FmOHs7bzJ_PKHVncHMd9nO577vskYPAwaP8ZpcON1GvPnVJXl73O43z_nu9ells97lhpfVkEtXuwoRKDW2ds6KxkoGhjVONM4irQwIbUsqLRXpDSxNzWvratGUnGkm2JLczbkJ26to_IDmPXF3CVNBxUoJPJnuZ9Mp9B8jxkEd-jF0iUutQHKaMrlMLjG7pg5iQKdOwR91-FJA1dSzOqi_ntXUswJIOuWv50tMn356DBMIpmasDxOH7f2_GT-PP4wj</recordid><startdate>20190220</startdate><enddate>20190220</enddate><creator>Vogel, John E.</creator><creator>Forouzan, Mehdi M.</creator><creator>Hardy, Emilee E.</creator><creator>Crawford, Sean T.</creator><creator>Wheeler, Dean R.</creator><creator>Mazzeo, Brian A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20190220</creationdate><title>Electrode microstructure controls localized electronic impedance in Li-ion batteries</title><author>Vogel, John E. ; Forouzan, Mehdi M. ; Hardy, Emilee E. ; Crawford, Sean T. ; Wheeler, Dean R. ; Mazzeo, Brian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-8f9f6ee100cd9ffd7bd831c3bf7bfde06c17ad508d07385e5c949df97b543a373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cathodes</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electronic conductivity</topic><topic>Flux density</topic><topic>Heterogeneity</topic><topic>Impedance</topic><topic>Ionic conductivity</topic><topic>Li-ion battery</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Microstructure</topic><topic>Nonuniformity</topic><topic>Rechargeable batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vogel, John E.</creatorcontrib><creatorcontrib>Forouzan, Mehdi M.</creatorcontrib><creatorcontrib>Hardy, Emilee E.</creatorcontrib><creatorcontrib>Crawford, Sean T.</creatorcontrib><creatorcontrib>Wheeler, Dean R.</creatorcontrib><creatorcontrib>Mazzeo, Brian A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vogel, John E.</au><au>Forouzan, Mehdi M.</au><au>Hardy, Emilee E.</au><au>Crawford, Sean T.</au><au>Wheeler, Dean R.</au><au>Mazzeo, Brian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrode microstructure controls localized electronic impedance in Li-ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2019-02-20</date><risdate>2019</risdate><volume>297</volume><issue>C</issue><spage>820</spage><epage>825</epage><pages>820-825</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Substantial heterogeneity and defects in lithium-ion battery films can be a cause of material and battery failure. Although non-uniformity has been observed previously, the physical origin of electronic impedance non-uniformities in cathode materials has not been well-studied. We show that the local microscopic structure of materials strongly affects the resulting local impedance as measured by a micro-four-line probe, demonstrates large variation, and that these variations occur over sub-millimeter and larger distances on two different commercial cathode materials. These experimental results are further compared to modeled electronic and ionic transport pathways through the observed structure. By elucidating the extent and origins of heterogeneity in battery electrode films we provide a key principle through which batteries can be optimally designed to increase their safety, energy density, power, and longevity.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2018.11.204</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2019-02, Vol.297 (C), p.820-825 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_osti_scitechconnect_1635814 |
source | ScienceDirect Journals |
subjects | Cathodes Electrode materials Electrodes Electronic conductivity Flux density Heterogeneity Impedance Ionic conductivity Li-ion battery Lithium Lithium-ion batteries Microstructure Nonuniformity Rechargeable batteries |
title | Electrode microstructure controls localized electronic impedance in Li-ion batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrode%20microstructure%20controls%20localized%20electronic%20impedance%20in%20Li-ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Vogel,%20John%20E.&rft.date=2019-02-20&rft.volume=297&rft.issue=C&rft.spage=820&rft.epage=825&rft.pages=820-825&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2018.11.204&rft_dat=%3Cproquest_osti_%3E2184094948%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-8f9f6ee100cd9ffd7bd831c3bf7bfde06c17ad508d07385e5c949df97b543a373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2184094948&rft_id=info:pmid/&rfr_iscdi=true |