Loading…

Electrode microstructure controls localized electronic impedance in Li-ion batteries

Substantial heterogeneity and defects in lithium-ion battery films can be a cause of material and battery failure. Although non-uniformity has been observed previously, the physical origin of electronic impedance non-uniformities in cathode materials has not been well-studied. We show that the local...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2019-02, Vol.297 (C), p.820-825
Main Authors: Vogel, John E., Forouzan, Mehdi M., Hardy, Emilee E., Crawford, Sean T., Wheeler, Dean R., Mazzeo, Brian A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-8f9f6ee100cd9ffd7bd831c3bf7bfde06c17ad508d07385e5c949df97b543a373
cites cdi_FETCH-LOGICAL-c456t-8f9f6ee100cd9ffd7bd831c3bf7bfde06c17ad508d07385e5c949df97b543a373
container_end_page 825
container_issue C
container_start_page 820
container_title Electrochimica acta
container_volume 297
creator Vogel, John E.
Forouzan, Mehdi M.
Hardy, Emilee E.
Crawford, Sean T.
Wheeler, Dean R.
Mazzeo, Brian A.
description Substantial heterogeneity and defects in lithium-ion battery films can be a cause of material and battery failure. Although non-uniformity has been observed previously, the physical origin of electronic impedance non-uniformities in cathode materials has not been well-studied. We show that the local microscopic structure of materials strongly affects the resulting local impedance as measured by a micro-four-line probe, demonstrates large variation, and that these variations occur over sub-millimeter and larger distances on two different commercial cathode materials. These experimental results are further compared to modeled electronic and ionic transport pathways through the observed structure. By elucidating the extent and origins of heterogeneity in battery electrode films we provide a key principle through which batteries can be optimally designed to increase their safety, energy density, power, and longevity.
doi_str_mv 10.1016/j.electacta.2018.11.204
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1635814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468618326884</els_id><sourcerecordid>2184094948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-8f9f6ee100cd9ffd7bd831c3bf7bfde06c17ad508d07385e5c949df97b543a373</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BoueWzObtEmPy7L-gQUv6zmkyQSzdNs1aQX99KZUvAoDD4Y3j988Qm6BFkChejgU2KIZdJpiRUEWAEn5GVmAFCxnsqzPyYJSYDmvZHVJrmI8UEpFJeiC7LfTcegtZkdvQh-HMJphDJiZvkv7NmZtb3Trv9FmOHs7bzJ_PKHVncHMd9nO577vskYPAwaP8ZpcON1GvPnVJXl73O43z_nu9ells97lhpfVkEtXuwoRKDW2ds6KxkoGhjVONM4irQwIbUsqLRXpDSxNzWvratGUnGkm2JLczbkJ26to_IDmPXF3CVNBxUoJPJnuZ9Mp9B8jxkEd-jF0iUutQHKaMrlMLjG7pg5iQKdOwR91-FJA1dSzOqi_ntXUswJIOuWv50tMn356DBMIpmasDxOH7f2_GT-PP4wj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184094948</pqid></control><display><type>article</type><title>Electrode microstructure controls localized electronic impedance in Li-ion batteries</title><source>ScienceDirect Journals</source><creator>Vogel, John E. ; Forouzan, Mehdi M. ; Hardy, Emilee E. ; Crawford, Sean T. ; Wheeler, Dean R. ; Mazzeo, Brian A.</creator><creatorcontrib>Vogel, John E. ; Forouzan, Mehdi M. ; Hardy, Emilee E. ; Crawford, Sean T. ; Wheeler, Dean R. ; Mazzeo, Brian A.</creatorcontrib><description>Substantial heterogeneity and defects in lithium-ion battery films can be a cause of material and battery failure. Although non-uniformity has been observed previously, the physical origin of electronic impedance non-uniformities in cathode materials has not been well-studied. We show that the local microscopic structure of materials strongly affects the resulting local impedance as measured by a micro-four-line probe, demonstrates large variation, and that these variations occur over sub-millimeter and larger distances on two different commercial cathode materials. These experimental results are further compared to modeled electronic and ionic transport pathways through the observed structure. By elucidating the extent and origins of heterogeneity in battery electrode films we provide a key principle through which batteries can be optimally designed to increase their safety, energy density, power, and longevity.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2018.11.204</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cathodes ; Electrode materials ; Electrodes ; Electronic conductivity ; Flux density ; Heterogeneity ; Impedance ; Ionic conductivity ; Li-ion battery ; Lithium ; Lithium-ion batteries ; Microstructure ; Nonuniformity ; Rechargeable batteries</subject><ispartof>Electrochimica acta, 2019-02, Vol.297 (C), p.820-825</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 20, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-8f9f6ee100cd9ffd7bd831c3bf7bfde06c17ad508d07385e5c949df97b543a373</citedby><cites>FETCH-LOGICAL-c456t-8f9f6ee100cd9ffd7bd831c3bf7bfde06c17ad508d07385e5c949df97b543a373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1635814$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vogel, John E.</creatorcontrib><creatorcontrib>Forouzan, Mehdi M.</creatorcontrib><creatorcontrib>Hardy, Emilee E.</creatorcontrib><creatorcontrib>Crawford, Sean T.</creatorcontrib><creatorcontrib>Wheeler, Dean R.</creatorcontrib><creatorcontrib>Mazzeo, Brian A.</creatorcontrib><title>Electrode microstructure controls localized electronic impedance in Li-ion batteries</title><title>Electrochimica acta</title><description>Substantial heterogeneity and defects in lithium-ion battery films can be a cause of material and battery failure. Although non-uniformity has been observed previously, the physical origin of electronic impedance non-uniformities in cathode materials has not been well-studied. We show that the local microscopic structure of materials strongly affects the resulting local impedance as measured by a micro-four-line probe, demonstrates large variation, and that these variations occur over sub-millimeter and larger distances on two different commercial cathode materials. These experimental results are further compared to modeled electronic and ionic transport pathways through the observed structure. By elucidating the extent and origins of heterogeneity in battery electrode films we provide a key principle through which batteries can be optimally designed to increase their safety, energy density, power, and longevity.</description><subject>Cathodes</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electronic conductivity</subject><subject>Flux density</subject><subject>Heterogeneity</subject><subject>Impedance</subject><subject>Ionic conductivity</subject><subject>Li-ion battery</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Microstructure</subject><subject>Nonuniformity</subject><subject>Rechargeable batteries</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BoueWzObtEmPy7L-gQUv6zmkyQSzdNs1aQX99KZUvAoDD4Y3j988Qm6BFkChejgU2KIZdJpiRUEWAEn5GVmAFCxnsqzPyYJSYDmvZHVJrmI8UEpFJeiC7LfTcegtZkdvQh-HMJphDJiZvkv7NmZtb3Trv9FmOHs7bzJ_PKHVncHMd9nO577vskYPAwaP8ZpcON1GvPnVJXl73O43z_nu9ells97lhpfVkEtXuwoRKDW2ds6KxkoGhjVONM4irQwIbUsqLRXpDSxNzWvratGUnGkm2JLczbkJ26to_IDmPXF3CVNBxUoJPJnuZ9Mp9B8jxkEd-jF0iUutQHKaMrlMLjG7pg5iQKdOwR91-FJA1dSzOqi_ntXUswJIOuWv50tMn356DBMIpmasDxOH7f2_GT-PP4wj</recordid><startdate>20190220</startdate><enddate>20190220</enddate><creator>Vogel, John E.</creator><creator>Forouzan, Mehdi M.</creator><creator>Hardy, Emilee E.</creator><creator>Crawford, Sean T.</creator><creator>Wheeler, Dean R.</creator><creator>Mazzeo, Brian A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20190220</creationdate><title>Electrode microstructure controls localized electronic impedance in Li-ion batteries</title><author>Vogel, John E. ; Forouzan, Mehdi M. ; Hardy, Emilee E. ; Crawford, Sean T. ; Wheeler, Dean R. ; Mazzeo, Brian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-8f9f6ee100cd9ffd7bd831c3bf7bfde06c17ad508d07385e5c949df97b543a373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cathodes</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electronic conductivity</topic><topic>Flux density</topic><topic>Heterogeneity</topic><topic>Impedance</topic><topic>Ionic conductivity</topic><topic>Li-ion battery</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Microstructure</topic><topic>Nonuniformity</topic><topic>Rechargeable batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vogel, John E.</creatorcontrib><creatorcontrib>Forouzan, Mehdi M.</creatorcontrib><creatorcontrib>Hardy, Emilee E.</creatorcontrib><creatorcontrib>Crawford, Sean T.</creatorcontrib><creatorcontrib>Wheeler, Dean R.</creatorcontrib><creatorcontrib>Mazzeo, Brian A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vogel, John E.</au><au>Forouzan, Mehdi M.</au><au>Hardy, Emilee E.</au><au>Crawford, Sean T.</au><au>Wheeler, Dean R.</au><au>Mazzeo, Brian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrode microstructure controls localized electronic impedance in Li-ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2019-02-20</date><risdate>2019</risdate><volume>297</volume><issue>C</issue><spage>820</spage><epage>825</epage><pages>820-825</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Substantial heterogeneity and defects in lithium-ion battery films can be a cause of material and battery failure. Although non-uniformity has been observed previously, the physical origin of electronic impedance non-uniformities in cathode materials has not been well-studied. We show that the local microscopic structure of materials strongly affects the resulting local impedance as measured by a micro-four-line probe, demonstrates large variation, and that these variations occur over sub-millimeter and larger distances on two different commercial cathode materials. These experimental results are further compared to modeled electronic and ionic transport pathways through the observed structure. By elucidating the extent and origins of heterogeneity in battery electrode films we provide a key principle through which batteries can be optimally designed to increase their safety, energy density, power, and longevity.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2018.11.204</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2019-02, Vol.297 (C), p.820-825
issn 0013-4686
1873-3859
language eng
recordid cdi_osti_scitechconnect_1635814
source ScienceDirect Journals
subjects Cathodes
Electrode materials
Electrodes
Electronic conductivity
Flux density
Heterogeneity
Impedance
Ionic conductivity
Li-ion battery
Lithium
Lithium-ion batteries
Microstructure
Nonuniformity
Rechargeable batteries
title Electrode microstructure controls localized electronic impedance in Li-ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrode%20microstructure%20controls%20localized%20electronic%20impedance%20in%20Li-ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Vogel,%20John%20E.&rft.date=2019-02-20&rft.volume=297&rft.issue=C&rft.spage=820&rft.epage=825&rft.pages=820-825&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2018.11.204&rft_dat=%3Cproquest_osti_%3E2184094948%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-8f9f6ee100cd9ffd7bd831c3bf7bfde06c17ad508d07385e5c949df97b543a373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2184094948&rft_id=info:pmid/&rfr_iscdi=true