Loading…

Dislocation loop evolution and radiation hardening in nickel-based concentrated solid solution alloys

Effects of chemical composition, ion irradiation dose and temperature on unfaulting of irradiation induced Frank dislocation loops to perfect loops in two nickel based single-phase solid solution alloys, Ni–20Fe and NiFe–20Cr, have been studied. The fraction of Frank loops decreases with irradiation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2020-09, Vol.538 (C), p.152247, Article 152247
Main Authors: Xiu, Pengyuan, Osetsky, Yuri N., Jiang, Li, Velisa, Gihan, Tong, Yang, Bei, Hongbin, Weber, William J., Zhang, Yanwen, Wang, Lumin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-fff57754ef0218233d5cb6f22e3995d2aa81586580cdc506995f203500830e0c3
cites cdi_FETCH-LOGICAL-c411t-fff57754ef0218233d5cb6f22e3995d2aa81586580cdc506995f203500830e0c3
container_end_page
container_issue C
container_start_page 152247
container_title Journal of nuclear materials
container_volume 538
creator Xiu, Pengyuan
Osetsky, Yuri N.
Jiang, Li
Velisa, Gihan
Tong, Yang
Bei, Hongbin
Weber, William J.
Zhang, Yanwen
Wang, Lumin
description Effects of chemical composition, ion irradiation dose and temperature on unfaulting of irradiation induced Frank dislocation loops to perfect loops in two nickel based single-phase solid solution alloys, Ni–20Fe and NiFe–20Cr, have been studied. The fraction of Frank loops decreases with irradiation dose from 7.2 to 38.4 dpa at 500°C, but with more Frank loops remaining in the ternary alloy. However, perfect loops and dislocation networks become the dominant features of defects at 580°C in both alloys. The results indicate a thermally assisted loop unfaulting process that may be hindered by more sluggish defect motion in the alloy with more chemical components. Nano-indentation with both continuous stiffness method and single indentation method are used to measure radiation hardening. Loop unfaulting in both alloys irradiated at 580°C reduced radiation hardening while significant hardening is observed after irradiation at 500°C. The quasi-static single indentation method exhibits lower hardness results compared to continuous stiffness method, because dislocations induced from the cyclic loading in the latter method get relaxed and stabilized, resulting in higher resistance to the indenter. [Display omitted] •High irradiation dose and temperature favor unfaulting of Frank dislocation loops to perfect loops that can reduce radiation hardening.•The process of loop unfaulting may be hindered by sluggish diffusion in chemically more complex alloy.
doi_str_mv 10.1016/j.jnucmat.2020.152247
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1637409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311519314278</els_id><sourcerecordid>2448687665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-fff57754ef0218233d5cb6f22e3995d2aa81586580cdc506995f203500830e0c3</originalsourceid><addsrcrecordid>eNqFkE1PxCAQhonRxPXjJ5g0eu46QGnZkzF-JyZe9ExYmLrUCiuwJv57Wbt3LzOZ4Z03Lw8hZxTmFGh7OcwHvzGfOs8ZsLITjDXdHplR2fG6kQz2yQyAsZpTKg7JUUoDAIgFiBnBW5fGYHR2wVdjCOsKv8O4-Ru1t1XU1k2PKx0teuffK-cr78wHjvVSJ7SVCd6gz1HnMqQwur-68xjH8JNOyEGvx4Snu35M3u7vXm8e6-eXh6eb6-faNJTmuu970XWiwR4YlYxzK8yy7RlDvlgIy7SWVMhWSDDWCGjLsmfABYDkgGD4MTmffEPKTiXjMppViefRZEVb3jWwKKKLSbSO4WuDKashbKIvuRRrGtnKrm1FUYlJZWJIKWKv1tF96vijKKgtdjWoHXa1xa4m7OXuarrD8s9vh3EbAwsg6-I2hQ3uH4dfBe2OPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448687665</pqid></control><display><type>article</type><title>Dislocation loop evolution and radiation hardening in nickel-based concentrated solid solution alloys</title><source>ScienceDirect Freedom Collection</source><creator>Xiu, Pengyuan ; Osetsky, Yuri N. ; Jiang, Li ; Velisa, Gihan ; Tong, Yang ; Bei, Hongbin ; Weber, William J. ; Zhang, Yanwen ; Wang, Lumin</creator><creatorcontrib>Xiu, Pengyuan ; Osetsky, Yuri N. ; Jiang, Li ; Velisa, Gihan ; Tong, Yang ; Bei, Hongbin ; Weber, William J. ; Zhang, Yanwen ; Wang, Lumin ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Effects of chemical composition, ion irradiation dose and temperature on unfaulting of irradiation induced Frank dislocation loops to perfect loops in two nickel based single-phase solid solution alloys, Ni–20Fe and NiFe–20Cr, have been studied. The fraction of Frank loops decreases with irradiation dose from 7.2 to 38.4 dpa at 500°C, but with more Frank loops remaining in the ternary alloy. However, perfect loops and dislocation networks become the dominant features of defects at 580°C in both alloys. The results indicate a thermally assisted loop unfaulting process that may be hindered by more sluggish defect motion in the alloy with more chemical components. Nano-indentation with both continuous stiffness method and single indentation method are used to measure radiation hardening. Loop unfaulting in both alloys irradiated at 580°C reduced radiation hardening while significant hardening is observed after irradiation at 500°C. The quasi-static single indentation method exhibits lower hardness results compared to continuous stiffness method, because dislocations induced from the cyclic loading in the latter method get relaxed and stabilized, resulting in higher resistance to the indenter. [Display omitted] •High irradiation dose and temperature favor unfaulting of Frank dislocation loops to perfect loops that can reduce radiation hardening.•The process of loop unfaulting may be hindered by sluggish diffusion in chemically more complex alloy.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2020.152247</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alloys ; Chemical composition ; Composition effects ; Concentrated solid solution alloys ; Cyclic loads ; Dislocation ; Dislocation loop ; Dislocation loops ; Ion irradiation ; Iron compounds ; Irradiation ; Irradiation effect ; Irradiation hardening ; MATERIALS SCIENCE ; Microstructural evolution ; Nanoindentation ; Nickel ; Nickel base alloys ; Nickel compounds ; Radiation ; Radiation dosage ; Radiation hardening ; Radiation measurement ; Solid solutions ; Stiffness ; Ternary alloys</subject><ispartof>Journal of nuclear materials, 2020-09, Vol.538 (C), p.152247, Article 152247</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-fff57754ef0218233d5cb6f22e3995d2aa81586580cdc506995f203500830e0c3</citedby><cites>FETCH-LOGICAL-c411t-fff57754ef0218233d5cb6f22e3995d2aa81586580cdc506995f203500830e0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1637409$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiu, Pengyuan</creatorcontrib><creatorcontrib>Osetsky, Yuri N.</creatorcontrib><creatorcontrib>Jiang, Li</creatorcontrib><creatorcontrib>Velisa, Gihan</creatorcontrib><creatorcontrib>Tong, Yang</creatorcontrib><creatorcontrib>Bei, Hongbin</creatorcontrib><creatorcontrib>Weber, William J.</creatorcontrib><creatorcontrib>Zhang, Yanwen</creatorcontrib><creatorcontrib>Wang, Lumin</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Dislocation loop evolution and radiation hardening in nickel-based concentrated solid solution alloys</title><title>Journal of nuclear materials</title><description>Effects of chemical composition, ion irradiation dose and temperature on unfaulting of irradiation induced Frank dislocation loops to perfect loops in two nickel based single-phase solid solution alloys, Ni–20Fe and NiFe–20Cr, have been studied. The fraction of Frank loops decreases with irradiation dose from 7.2 to 38.4 dpa at 500°C, but with more Frank loops remaining in the ternary alloy. However, perfect loops and dislocation networks become the dominant features of defects at 580°C in both alloys. The results indicate a thermally assisted loop unfaulting process that may be hindered by more sluggish defect motion in the alloy with more chemical components. Nano-indentation with both continuous stiffness method and single indentation method are used to measure radiation hardening. Loop unfaulting in both alloys irradiated at 580°C reduced radiation hardening while significant hardening is observed after irradiation at 500°C. The quasi-static single indentation method exhibits lower hardness results compared to continuous stiffness method, because dislocations induced from the cyclic loading in the latter method get relaxed and stabilized, resulting in higher resistance to the indenter. [Display omitted] •High irradiation dose and temperature favor unfaulting of Frank dislocation loops to perfect loops that can reduce radiation hardening.•The process of loop unfaulting may be hindered by sluggish diffusion in chemically more complex alloy.</description><subject>Alloys</subject><subject>Chemical composition</subject><subject>Composition effects</subject><subject>Concentrated solid solution alloys</subject><subject>Cyclic loads</subject><subject>Dislocation</subject><subject>Dislocation loop</subject><subject>Dislocation loops</subject><subject>Ion irradiation</subject><subject>Iron compounds</subject><subject>Irradiation</subject><subject>Irradiation effect</subject><subject>Irradiation hardening</subject><subject>MATERIALS SCIENCE</subject><subject>Microstructural evolution</subject><subject>Nanoindentation</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Nickel compounds</subject><subject>Radiation</subject><subject>Radiation dosage</subject><subject>Radiation hardening</subject><subject>Radiation measurement</subject><subject>Solid solutions</subject><subject>Stiffness</subject><subject>Ternary alloys</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PxCAQhonRxPXjJ5g0eu46QGnZkzF-JyZe9ExYmLrUCiuwJv57Wbt3LzOZ4Z03Lw8hZxTmFGh7OcwHvzGfOs8ZsLITjDXdHplR2fG6kQz2yQyAsZpTKg7JUUoDAIgFiBnBW5fGYHR2wVdjCOsKv8O4-Ru1t1XU1k2PKx0teuffK-cr78wHjvVSJ7SVCd6gz1HnMqQwur-68xjH8JNOyEGvx4Snu35M3u7vXm8e6-eXh6eb6-faNJTmuu970XWiwR4YlYxzK8yy7RlDvlgIy7SWVMhWSDDWCGjLsmfABYDkgGD4MTmffEPKTiXjMppViefRZEVb3jWwKKKLSbSO4WuDKashbKIvuRRrGtnKrm1FUYlJZWJIKWKv1tF96vijKKgtdjWoHXa1xa4m7OXuarrD8s9vh3EbAwsg6-I2hQ3uH4dfBe2OPg</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Xiu, Pengyuan</creator><creator>Osetsky, Yuri N.</creator><creator>Jiang, Li</creator><creator>Velisa, Gihan</creator><creator>Tong, Yang</creator><creator>Bei, Hongbin</creator><creator>Weber, William J.</creator><creator>Zhang, Yanwen</creator><creator>Wang, Lumin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>202009</creationdate><title>Dislocation loop evolution and radiation hardening in nickel-based concentrated solid solution alloys</title><author>Xiu, Pengyuan ; Osetsky, Yuri N. ; Jiang, Li ; Velisa, Gihan ; Tong, Yang ; Bei, Hongbin ; Weber, William J. ; Zhang, Yanwen ; Wang, Lumin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-fff57754ef0218233d5cb6f22e3995d2aa81586580cdc506995f203500830e0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloys</topic><topic>Chemical composition</topic><topic>Composition effects</topic><topic>Concentrated solid solution alloys</topic><topic>Cyclic loads</topic><topic>Dislocation</topic><topic>Dislocation loop</topic><topic>Dislocation loops</topic><topic>Ion irradiation</topic><topic>Iron compounds</topic><topic>Irradiation</topic><topic>Irradiation effect</topic><topic>Irradiation hardening</topic><topic>MATERIALS SCIENCE</topic><topic>Microstructural evolution</topic><topic>Nanoindentation</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Nickel compounds</topic><topic>Radiation</topic><topic>Radiation dosage</topic><topic>Radiation hardening</topic><topic>Radiation measurement</topic><topic>Solid solutions</topic><topic>Stiffness</topic><topic>Ternary alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiu, Pengyuan</creatorcontrib><creatorcontrib>Osetsky, Yuri N.</creatorcontrib><creatorcontrib>Jiang, Li</creatorcontrib><creatorcontrib>Velisa, Gihan</creatorcontrib><creatorcontrib>Tong, Yang</creatorcontrib><creatorcontrib>Bei, Hongbin</creatorcontrib><creatorcontrib>Weber, William J.</creatorcontrib><creatorcontrib>Zhang, Yanwen</creatorcontrib><creatorcontrib>Wang, Lumin</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiu, Pengyuan</au><au>Osetsky, Yuri N.</au><au>Jiang, Li</au><au>Velisa, Gihan</au><au>Tong, Yang</au><au>Bei, Hongbin</au><au>Weber, William J.</au><au>Zhang, Yanwen</au><au>Wang, Lumin</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation loop evolution and radiation hardening in nickel-based concentrated solid solution alloys</atitle><jtitle>Journal of nuclear materials</jtitle><date>2020-09</date><risdate>2020</risdate><volume>538</volume><issue>C</issue><spage>152247</spage><pages>152247-</pages><artnum>152247</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Effects of chemical composition, ion irradiation dose and temperature on unfaulting of irradiation induced Frank dislocation loops to perfect loops in two nickel based single-phase solid solution alloys, Ni–20Fe and NiFe–20Cr, have been studied. The fraction of Frank loops decreases with irradiation dose from 7.2 to 38.4 dpa at 500°C, but with more Frank loops remaining in the ternary alloy. However, perfect loops and dislocation networks become the dominant features of defects at 580°C in both alloys. The results indicate a thermally assisted loop unfaulting process that may be hindered by more sluggish defect motion in the alloy with more chemical components. Nano-indentation with both continuous stiffness method and single indentation method are used to measure radiation hardening. Loop unfaulting in both alloys irradiated at 580°C reduced radiation hardening while significant hardening is observed after irradiation at 500°C. The quasi-static single indentation method exhibits lower hardness results compared to continuous stiffness method, because dislocations induced from the cyclic loading in the latter method get relaxed and stabilized, resulting in higher resistance to the indenter. [Display omitted] •High irradiation dose and temperature favor unfaulting of Frank dislocation loops to perfect loops that can reduce radiation hardening.•The process of loop unfaulting may be hindered by sluggish diffusion in chemically more complex alloy.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2020.152247</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2020-09, Vol.538 (C), p.152247, Article 152247
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_1637409
source ScienceDirect Freedom Collection
subjects Alloys
Chemical composition
Composition effects
Concentrated solid solution alloys
Cyclic loads
Dislocation
Dislocation loop
Dislocation loops
Ion irradiation
Iron compounds
Irradiation
Irradiation effect
Irradiation hardening
MATERIALS SCIENCE
Microstructural evolution
Nanoindentation
Nickel
Nickel base alloys
Nickel compounds
Radiation
Radiation dosage
Radiation hardening
Radiation measurement
Solid solutions
Stiffness
Ternary alloys
title Dislocation loop evolution and radiation hardening in nickel-based concentrated solid solution alloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20loop%20evolution%20and%20radiation%20hardening%20in%20nickel-based%20concentrated%20solid%20solution%20alloys&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Xiu,%20Pengyuan&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-09&rft.volume=538&rft.issue=C&rft.spage=152247&rft.pages=152247-&rft.artnum=152247&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2020.152247&rft_dat=%3Cproquest_osti_%3E2448687665%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-fff57754ef0218233d5cb6f22e3995d2aa81586580cdc506995f203500830e0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448687665&rft_id=info:pmid/&rfr_iscdi=true