Loading…

Role of phosphate source in improving the proton conductivity of tin pyrophosphate and its composite electrolytes

Metal pyrophosphates (MPPs) in general and tin pyrophosphate (TPP) in particular have received significant interest in the last decade due to their potential as proton conductors for electrolyte application in intermediate temperature (IT)-fuel cells. However, for MPP based electrolytes, despite hig...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-08, Vol.8 (32), p.16345-16354
Main Authors: Ramaiyan, Kannan P, Herrera, Sergio, Workman, Michael J, Semelsberger, Troy A, Atanasov, Vladimir, Kerres, Jochen, Maurya, Sandip, Kim, Yu Seung, Kreller, Cortney R, Mukundan, Rangachary
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-9efe4792467ce7697ae8bf27f2e12c2cbe749856582c51050cf07f825ea9a7bc3
cites cdi_FETCH-LOGICAL-c407t-9efe4792467ce7697ae8bf27f2e12c2cbe749856582c51050cf07f825ea9a7bc3
container_end_page 16354
container_issue 32
container_start_page 16345
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Ramaiyan, Kannan P
Herrera, Sergio
Workman, Michael J
Semelsberger, Troy A
Atanasov, Vladimir
Kerres, Jochen
Maurya, Sandip
Kim, Yu Seung
Kreller, Cortney R
Mukundan, Rangachary
description Metal pyrophosphates (MPPs) in general and tin pyrophosphate (TPP) in particular have received significant interest in the last decade due to their potential as proton conductors for electrolyte application in intermediate temperature (IT)-fuel cells. However, for MPP based electrolytes, despite high reported proton conductivities, achieving good fuel cell performance and high open circuit voltage (OCV) remains a challenge with synthesis methods playing a crucial role in determining the final proton conductivity. Here we report the role of phosphate precursor in determining the TPP proton conductivity by examining five different precursors: (1) phosphoric acid (TPP-PA), (2) ammonium hydroxide + phosphoric acid (TPP-NH 4 OH), (3) diammonium phosphate (TPP-DAP), (4) tetramethylammonium sulphate + phosphoric acid (TPP-TMAP), and (5) tetrabutylammonium phosphate (TPP-TBAP), where a maximum conductivity of 88 mS cm −1 at 200 °C was obtained for TPP prepared from the TBAP precursor. TPP prepared from all of the different precursors formed the crystalline cubic Pa 3&cmb.macr; phase after sintering at 650 °C for 2.5 hours. Furthermore, TPP-TBAP/Nafion® composite membranes prepared with a 90 : 10 ratio exhibited an OCV of 0.98 V and produced a maximum peak power density (PPD) of 630 mW cm −2 at an operating temperature of 220 °C. Our results demonstrate the significant impact of the TPP precursor on proton conductivity and fuel cell performance. Proper phosphorus precursor selection during synthesis could help produce better tin-pyrophosphate powder and composite membranes with improved fuel cell performance.
doi_str_mv 10.1039/d0ta04327c
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1643728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434733906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-9efe4792467ce7697ae8bf27f2e12c2cbe749856582c51050cf07f825ea9a7bc3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRsNRevAtRb8JqNvuRzbHUTygIUs9hm524Ke1mm6SF_fdOXbE35zLD8MzwvjNRdJnQ-4Sm4qGmoaJZyrg6iUaM5jTmmShO_-qyPI8m3q8oRklpIcQo2n7YNRCrSddY3zVVAOLtzikgpiVm0zm7N-0XCQ0QrINtibJtvVPB7E3oD4MBwa539rigamtigkdy01lvsANrUMHZdR_AX0Rnulp7mPzmcfT5_LSYvcbz95e32XQeq4zyEAvQkHHBsoIr4IXgFZRLzbhmkDDF1BLQXJkXeclUnqBBpSnXJcuhEhVfqnQc3Qx7rQ9GeoU6VIPiW5QikyJLOSsRuh0gNLfdgQ9yhe5b1CVZlmY8TQUtkLobKOWs9w607JzZVK6XCZWH08tHupj-nH6G8PUAO6_-uONrZFdrZK7-Y9JvH4aNRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434733906</pqid></control><display><type>article</type><title>Role of phosphate source in improving the proton conductivity of tin pyrophosphate and its composite electrolytes</title><source>Royal Society of Chemistry</source><creator>Ramaiyan, Kannan P ; Herrera, Sergio ; Workman, Michael J ; Semelsberger, Troy A ; Atanasov, Vladimir ; Kerres, Jochen ; Maurya, Sandip ; Kim, Yu Seung ; Kreller, Cortney R ; Mukundan, Rangachary</creator><creatorcontrib>Ramaiyan, Kannan P ; Herrera, Sergio ; Workman, Michael J ; Semelsberger, Troy A ; Atanasov, Vladimir ; Kerres, Jochen ; Maurya, Sandip ; Kim, Yu Seung ; Kreller, Cortney R ; Mukundan, Rangachary</creatorcontrib><description>Metal pyrophosphates (MPPs) in general and tin pyrophosphate (TPP) in particular have received significant interest in the last decade due to their potential as proton conductors for electrolyte application in intermediate temperature (IT)-fuel cells. However, for MPP based electrolytes, despite high reported proton conductivities, achieving good fuel cell performance and high open circuit voltage (OCV) remains a challenge with synthesis methods playing a crucial role in determining the final proton conductivity. Here we report the role of phosphate precursor in determining the TPP proton conductivity by examining five different precursors: (1) phosphoric acid (TPP-PA), (2) ammonium hydroxide + phosphoric acid (TPP-NH 4 OH), (3) diammonium phosphate (TPP-DAP), (4) tetramethylammonium sulphate + phosphoric acid (TPP-TMAP), and (5) tetrabutylammonium phosphate (TPP-TBAP), where a maximum conductivity of 88 mS cm −1 at 200 °C was obtained for TPP prepared from the TBAP precursor. TPP prepared from all of the different precursors formed the crystalline cubic Pa 3&amp;cmb.macr; phase after sintering at 650 °C for 2.5 hours. Furthermore, TPP-TBAP/Nafion® composite membranes prepared with a 90 : 10 ratio exhibited an OCV of 0.98 V and produced a maximum peak power density (PPD) of 630 mW cm −2 at an operating temperature of 220 °C. Our results demonstrate the significant impact of the TPP precursor on proton conductivity and fuel cell performance. Proper phosphorus precursor selection during synthesis could help produce better tin-pyrophosphate powder and composite membranes with improved fuel cell performance.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta04327c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonium ; Ammonium hydroxide ; Conductivity ; Conductors ; Electrolytes ; Electrolytic cells ; Fuel cells ; Fuel technology ; Open circuit voltage ; Operating temperature ; Phosphates ; Phosphoric acid ; Precursors ; Protons ; Pyrophosphates ; Tin</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-08, Vol.8 (32), p.16345-16354</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-9efe4792467ce7697ae8bf27f2e12c2cbe749856582c51050cf07f825ea9a7bc3</citedby><cites>FETCH-LOGICAL-c407t-9efe4792467ce7697ae8bf27f2e12c2cbe749856582c51050cf07f825ea9a7bc3</cites><orcidid>0000-0002-5679-3930 ; 0000-0003-1489-8707 ; 0000-0002-5446-3890 ; 0000-0003-0204-7550 ; 0000-0003-2180-2494 ; 0000-0002-7600-2008 ; 0000000314898707 ; 0000000256793930 ; 0000000254463890 ; 0000000321802494 ; 0000000276002008 ; 0000000302047550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1643728$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramaiyan, Kannan P</creatorcontrib><creatorcontrib>Herrera, Sergio</creatorcontrib><creatorcontrib>Workman, Michael J</creatorcontrib><creatorcontrib>Semelsberger, Troy A</creatorcontrib><creatorcontrib>Atanasov, Vladimir</creatorcontrib><creatorcontrib>Kerres, Jochen</creatorcontrib><creatorcontrib>Maurya, Sandip</creatorcontrib><creatorcontrib>Kim, Yu Seung</creatorcontrib><creatorcontrib>Kreller, Cortney R</creatorcontrib><creatorcontrib>Mukundan, Rangachary</creatorcontrib><title>Role of phosphate source in improving the proton conductivity of tin pyrophosphate and its composite electrolytes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Metal pyrophosphates (MPPs) in general and tin pyrophosphate (TPP) in particular have received significant interest in the last decade due to their potential as proton conductors for electrolyte application in intermediate temperature (IT)-fuel cells. However, for MPP based electrolytes, despite high reported proton conductivities, achieving good fuel cell performance and high open circuit voltage (OCV) remains a challenge with synthesis methods playing a crucial role in determining the final proton conductivity. Here we report the role of phosphate precursor in determining the TPP proton conductivity by examining five different precursors: (1) phosphoric acid (TPP-PA), (2) ammonium hydroxide + phosphoric acid (TPP-NH 4 OH), (3) diammonium phosphate (TPP-DAP), (4) tetramethylammonium sulphate + phosphoric acid (TPP-TMAP), and (5) tetrabutylammonium phosphate (TPP-TBAP), where a maximum conductivity of 88 mS cm −1 at 200 °C was obtained for TPP prepared from the TBAP precursor. TPP prepared from all of the different precursors formed the crystalline cubic Pa 3&amp;cmb.macr; phase after sintering at 650 °C for 2.5 hours. Furthermore, TPP-TBAP/Nafion® composite membranes prepared with a 90 : 10 ratio exhibited an OCV of 0.98 V and produced a maximum peak power density (PPD) of 630 mW cm −2 at an operating temperature of 220 °C. Our results demonstrate the significant impact of the TPP precursor on proton conductivity and fuel cell performance. Proper phosphorus precursor selection during synthesis could help produce better tin-pyrophosphate powder and composite membranes with improved fuel cell performance.</description><subject>Ammonium</subject><subject>Ammonium hydroxide</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Open circuit voltage</subject><subject>Operating temperature</subject><subject>Phosphates</subject><subject>Phosphoric acid</subject><subject>Precursors</subject><subject>Protons</subject><subject>Pyrophosphates</subject><subject>Tin</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRsNRevAtRb8JqNvuRzbHUTygIUs9hm524Ke1mm6SF_fdOXbE35zLD8MzwvjNRdJnQ-4Sm4qGmoaJZyrg6iUaM5jTmmShO_-qyPI8m3q8oRklpIcQo2n7YNRCrSddY3zVVAOLtzikgpiVm0zm7N-0XCQ0QrINtibJtvVPB7E3oD4MBwa539rigamtigkdy01lvsANrUMHZdR_AX0Rnulp7mPzmcfT5_LSYvcbz95e32XQeq4zyEAvQkHHBsoIr4IXgFZRLzbhmkDDF1BLQXJkXeclUnqBBpSnXJcuhEhVfqnQc3Qx7rQ9GeoU6VIPiW5QikyJLOSsRuh0gNLfdgQ9yhe5b1CVZlmY8TQUtkLobKOWs9w607JzZVK6XCZWH08tHupj-nH6G8PUAO6_-uONrZFdrZK7-Y9JvH4aNRg</recordid><startdate>20200818</startdate><enddate>20200818</enddate><creator>Ramaiyan, Kannan P</creator><creator>Herrera, Sergio</creator><creator>Workman, Michael J</creator><creator>Semelsberger, Troy A</creator><creator>Atanasov, Vladimir</creator><creator>Kerres, Jochen</creator><creator>Maurya, Sandip</creator><creator>Kim, Yu Seung</creator><creator>Kreller, Cortney R</creator><creator>Mukundan, Rangachary</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5679-3930</orcidid><orcidid>https://orcid.org/0000-0003-1489-8707</orcidid><orcidid>https://orcid.org/0000-0002-5446-3890</orcidid><orcidid>https://orcid.org/0000-0003-0204-7550</orcidid><orcidid>https://orcid.org/0000-0003-2180-2494</orcidid><orcidid>https://orcid.org/0000-0002-7600-2008</orcidid><orcidid>https://orcid.org/0000000314898707</orcidid><orcidid>https://orcid.org/0000000256793930</orcidid><orcidid>https://orcid.org/0000000254463890</orcidid><orcidid>https://orcid.org/0000000321802494</orcidid><orcidid>https://orcid.org/0000000276002008</orcidid><orcidid>https://orcid.org/0000000302047550</orcidid></search><sort><creationdate>20200818</creationdate><title>Role of phosphate source in improving the proton conductivity of tin pyrophosphate and its composite electrolytes</title><author>Ramaiyan, Kannan P ; Herrera, Sergio ; Workman, Michael J ; Semelsberger, Troy A ; Atanasov, Vladimir ; Kerres, Jochen ; Maurya, Sandip ; Kim, Yu Seung ; Kreller, Cortney R ; Mukundan, Rangachary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-9efe4792467ce7697ae8bf27f2e12c2cbe749856582c51050cf07f825ea9a7bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonium</topic><topic>Ammonium hydroxide</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Open circuit voltage</topic><topic>Operating temperature</topic><topic>Phosphates</topic><topic>Phosphoric acid</topic><topic>Precursors</topic><topic>Protons</topic><topic>Pyrophosphates</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramaiyan, Kannan P</creatorcontrib><creatorcontrib>Herrera, Sergio</creatorcontrib><creatorcontrib>Workman, Michael J</creatorcontrib><creatorcontrib>Semelsberger, Troy A</creatorcontrib><creatorcontrib>Atanasov, Vladimir</creatorcontrib><creatorcontrib>Kerres, Jochen</creatorcontrib><creatorcontrib>Maurya, Sandip</creatorcontrib><creatorcontrib>Kim, Yu Seung</creatorcontrib><creatorcontrib>Kreller, Cortney R</creatorcontrib><creatorcontrib>Mukundan, Rangachary</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramaiyan, Kannan P</au><au>Herrera, Sergio</au><au>Workman, Michael J</au><au>Semelsberger, Troy A</au><au>Atanasov, Vladimir</au><au>Kerres, Jochen</au><au>Maurya, Sandip</au><au>Kim, Yu Seung</au><au>Kreller, Cortney R</au><au>Mukundan, Rangachary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of phosphate source in improving the proton conductivity of tin pyrophosphate and its composite electrolytes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-08-18</date><risdate>2020</risdate><volume>8</volume><issue>32</issue><spage>16345</spage><epage>16354</epage><pages>16345-16354</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Metal pyrophosphates (MPPs) in general and tin pyrophosphate (TPP) in particular have received significant interest in the last decade due to their potential as proton conductors for electrolyte application in intermediate temperature (IT)-fuel cells. However, for MPP based electrolytes, despite high reported proton conductivities, achieving good fuel cell performance and high open circuit voltage (OCV) remains a challenge with synthesis methods playing a crucial role in determining the final proton conductivity. Here we report the role of phosphate precursor in determining the TPP proton conductivity by examining five different precursors: (1) phosphoric acid (TPP-PA), (2) ammonium hydroxide + phosphoric acid (TPP-NH 4 OH), (3) diammonium phosphate (TPP-DAP), (4) tetramethylammonium sulphate + phosphoric acid (TPP-TMAP), and (5) tetrabutylammonium phosphate (TPP-TBAP), where a maximum conductivity of 88 mS cm −1 at 200 °C was obtained for TPP prepared from the TBAP precursor. TPP prepared from all of the different precursors formed the crystalline cubic Pa 3&amp;cmb.macr; phase after sintering at 650 °C for 2.5 hours. Furthermore, TPP-TBAP/Nafion® composite membranes prepared with a 90 : 10 ratio exhibited an OCV of 0.98 V and produced a maximum peak power density (PPD) of 630 mW cm −2 at an operating temperature of 220 °C. Our results demonstrate the significant impact of the TPP precursor on proton conductivity and fuel cell performance. Proper phosphorus precursor selection during synthesis could help produce better tin-pyrophosphate powder and composite membranes with improved fuel cell performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta04327c</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5679-3930</orcidid><orcidid>https://orcid.org/0000-0003-1489-8707</orcidid><orcidid>https://orcid.org/0000-0002-5446-3890</orcidid><orcidid>https://orcid.org/0000-0003-0204-7550</orcidid><orcidid>https://orcid.org/0000-0003-2180-2494</orcidid><orcidid>https://orcid.org/0000-0002-7600-2008</orcidid><orcidid>https://orcid.org/0000000314898707</orcidid><orcidid>https://orcid.org/0000000256793930</orcidid><orcidid>https://orcid.org/0000000254463890</orcidid><orcidid>https://orcid.org/0000000321802494</orcidid><orcidid>https://orcid.org/0000000276002008</orcidid><orcidid>https://orcid.org/0000000302047550</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-08, Vol.8 (32), p.16345-16354
issn 2050-7488
2050-7496
language eng
recordid cdi_osti_scitechconnect_1643728
source Royal Society of Chemistry
subjects Ammonium
Ammonium hydroxide
Conductivity
Conductors
Electrolytes
Electrolytic cells
Fuel cells
Fuel technology
Open circuit voltage
Operating temperature
Phosphates
Phosphoric acid
Precursors
Protons
Pyrophosphates
Tin
title Role of phosphate source in improving the proton conductivity of tin pyrophosphate and its composite electrolytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20phosphate%20source%20in%20improving%20the%20proton%20conductivity%20of%20tin%20pyrophosphate%20and%20its%20composite%20electrolytes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ramaiyan,%20Kannan%20P&rft.date=2020-08-18&rft.volume=8&rft.issue=32&rft.spage=16345&rft.epage=16354&rft.pages=16345-16354&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta04327c&rft_dat=%3Cproquest_osti_%3E2434733906%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-9efe4792467ce7697ae8bf27f2e12c2cbe749856582c51050cf07f825ea9a7bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434733906&rft_id=info:pmid/&rfr_iscdi=true