Loading…
Role of phosphate source in improving the proton conductivity of tin pyrophosphate and its composite electrolytes
Metal pyrophosphates (MPPs) in general and tin pyrophosphate (TPP) in particular have received significant interest in the last decade due to their potential as proton conductors for electrolyte application in intermediate temperature (IT)-fuel cells. However, for MPP based electrolytes, despite hig...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-08, Vol.8 (32), p.16345-16354 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-9efe4792467ce7697ae8bf27f2e12c2cbe749856582c51050cf07f825ea9a7bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-9efe4792467ce7697ae8bf27f2e12c2cbe749856582c51050cf07f825ea9a7bc3 |
container_end_page | 16354 |
container_issue | 32 |
container_start_page | 16345 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Ramaiyan, Kannan P Herrera, Sergio Workman, Michael J Semelsberger, Troy A Atanasov, Vladimir Kerres, Jochen Maurya, Sandip Kim, Yu Seung Kreller, Cortney R Mukundan, Rangachary |
description | Metal pyrophosphates (MPPs) in general and tin pyrophosphate (TPP) in particular have received significant interest in the last decade due to their potential as proton conductors for electrolyte application in intermediate temperature (IT)-fuel cells. However, for MPP based electrolytes, despite high reported proton conductivities, achieving good fuel cell performance and high open circuit voltage (OCV) remains a challenge with synthesis methods playing a crucial role in determining the final proton conductivity. Here we report the role of phosphate precursor in determining the TPP proton conductivity by examining five different precursors: (1) phosphoric acid (TPP-PA), (2) ammonium hydroxide + phosphoric acid (TPP-NH
4
OH), (3) diammonium phosphate (TPP-DAP), (4) tetramethylammonium sulphate + phosphoric acid (TPP-TMAP), and (5) tetrabutylammonium phosphate (TPP-TBAP), where a maximum conductivity of 88 mS cm
−1
at 200 °C was obtained for TPP prepared from the TBAP precursor. TPP prepared from all of the different precursors formed the crystalline cubic
Pa
3&cmb.macr; phase after sintering at 650 °C for 2.5 hours. Furthermore, TPP-TBAP/Nafion® composite membranes prepared with a 90 : 10 ratio exhibited an OCV of 0.98 V and produced a maximum peak power density (PPD) of 630 mW cm
−2
at an operating temperature of 220 °C. Our results demonstrate the significant impact of the TPP precursor on proton conductivity and fuel cell performance.
Proper phosphorus precursor selection during synthesis could help produce better tin-pyrophosphate powder and composite membranes with improved fuel cell performance. |
doi_str_mv | 10.1039/d0ta04327c |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1643728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434733906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-9efe4792467ce7697ae8bf27f2e12c2cbe749856582c51050cf07f825ea9a7bc3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRsNRevAtRb8JqNvuRzbHUTygIUs9hm524Ke1mm6SF_fdOXbE35zLD8MzwvjNRdJnQ-4Sm4qGmoaJZyrg6iUaM5jTmmShO_-qyPI8m3q8oRklpIcQo2n7YNRCrSddY3zVVAOLtzikgpiVm0zm7N-0XCQ0QrINtibJtvVPB7E3oD4MBwa539rigamtigkdy01lvsANrUMHZdR_AX0Rnulp7mPzmcfT5_LSYvcbz95e32XQeq4zyEAvQkHHBsoIr4IXgFZRLzbhmkDDF1BLQXJkXeclUnqBBpSnXJcuhEhVfqnQc3Qx7rQ9GeoU6VIPiW5QikyJLOSsRuh0gNLfdgQ9yhe5b1CVZlmY8TQUtkLobKOWs9w607JzZVK6XCZWH08tHupj-nH6G8PUAO6_-uONrZFdrZK7-Y9JvH4aNRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434733906</pqid></control><display><type>article</type><title>Role of phosphate source in improving the proton conductivity of tin pyrophosphate and its composite electrolytes</title><source>Royal Society of Chemistry</source><creator>Ramaiyan, Kannan P ; Herrera, Sergio ; Workman, Michael J ; Semelsberger, Troy A ; Atanasov, Vladimir ; Kerres, Jochen ; Maurya, Sandip ; Kim, Yu Seung ; Kreller, Cortney R ; Mukundan, Rangachary</creator><creatorcontrib>Ramaiyan, Kannan P ; Herrera, Sergio ; Workman, Michael J ; Semelsberger, Troy A ; Atanasov, Vladimir ; Kerres, Jochen ; Maurya, Sandip ; Kim, Yu Seung ; Kreller, Cortney R ; Mukundan, Rangachary</creatorcontrib><description>Metal pyrophosphates (MPPs) in general and tin pyrophosphate (TPP) in particular have received significant interest in the last decade due to their potential as proton conductors for electrolyte application in intermediate temperature (IT)-fuel cells. However, for MPP based electrolytes, despite high reported proton conductivities, achieving good fuel cell performance and high open circuit voltage (OCV) remains a challenge with synthesis methods playing a crucial role in determining the final proton conductivity. Here we report the role of phosphate precursor in determining the TPP proton conductivity by examining five different precursors: (1) phosphoric acid (TPP-PA), (2) ammonium hydroxide + phosphoric acid (TPP-NH
4
OH), (3) diammonium phosphate (TPP-DAP), (4) tetramethylammonium sulphate + phosphoric acid (TPP-TMAP), and (5) tetrabutylammonium phosphate (TPP-TBAP), where a maximum conductivity of 88 mS cm
−1
at 200 °C was obtained for TPP prepared from the TBAP precursor. TPP prepared from all of the different precursors formed the crystalline cubic
Pa
3&cmb.macr; phase after sintering at 650 °C for 2.5 hours. Furthermore, TPP-TBAP/Nafion® composite membranes prepared with a 90 : 10 ratio exhibited an OCV of 0.98 V and produced a maximum peak power density (PPD) of 630 mW cm
−2
at an operating temperature of 220 °C. Our results demonstrate the significant impact of the TPP precursor on proton conductivity and fuel cell performance.
Proper phosphorus precursor selection during synthesis could help produce better tin-pyrophosphate powder and composite membranes with improved fuel cell performance.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta04327c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ammonium ; Ammonium hydroxide ; Conductivity ; Conductors ; Electrolytes ; Electrolytic cells ; Fuel cells ; Fuel technology ; Open circuit voltage ; Operating temperature ; Phosphates ; Phosphoric acid ; Precursors ; Protons ; Pyrophosphates ; Tin</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-08, Vol.8 (32), p.16345-16354</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-9efe4792467ce7697ae8bf27f2e12c2cbe749856582c51050cf07f825ea9a7bc3</citedby><cites>FETCH-LOGICAL-c407t-9efe4792467ce7697ae8bf27f2e12c2cbe749856582c51050cf07f825ea9a7bc3</cites><orcidid>0000-0002-5679-3930 ; 0000-0003-1489-8707 ; 0000-0002-5446-3890 ; 0000-0003-0204-7550 ; 0000-0003-2180-2494 ; 0000-0002-7600-2008 ; 0000000314898707 ; 0000000256793930 ; 0000000254463890 ; 0000000321802494 ; 0000000276002008 ; 0000000302047550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1643728$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramaiyan, Kannan P</creatorcontrib><creatorcontrib>Herrera, Sergio</creatorcontrib><creatorcontrib>Workman, Michael J</creatorcontrib><creatorcontrib>Semelsberger, Troy A</creatorcontrib><creatorcontrib>Atanasov, Vladimir</creatorcontrib><creatorcontrib>Kerres, Jochen</creatorcontrib><creatorcontrib>Maurya, Sandip</creatorcontrib><creatorcontrib>Kim, Yu Seung</creatorcontrib><creatorcontrib>Kreller, Cortney R</creatorcontrib><creatorcontrib>Mukundan, Rangachary</creatorcontrib><title>Role of phosphate source in improving the proton conductivity of tin pyrophosphate and its composite electrolytes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Metal pyrophosphates (MPPs) in general and tin pyrophosphate (TPP) in particular have received significant interest in the last decade due to their potential as proton conductors for electrolyte application in intermediate temperature (IT)-fuel cells. However, for MPP based electrolytes, despite high reported proton conductivities, achieving good fuel cell performance and high open circuit voltage (OCV) remains a challenge with synthesis methods playing a crucial role in determining the final proton conductivity. Here we report the role of phosphate precursor in determining the TPP proton conductivity by examining five different precursors: (1) phosphoric acid (TPP-PA), (2) ammonium hydroxide + phosphoric acid (TPP-NH
4
OH), (3) diammonium phosphate (TPP-DAP), (4) tetramethylammonium sulphate + phosphoric acid (TPP-TMAP), and (5) tetrabutylammonium phosphate (TPP-TBAP), where a maximum conductivity of 88 mS cm
−1
at 200 °C was obtained for TPP prepared from the TBAP precursor. TPP prepared from all of the different precursors formed the crystalline cubic
Pa
3&cmb.macr; phase after sintering at 650 °C for 2.5 hours. Furthermore, TPP-TBAP/Nafion® composite membranes prepared with a 90 : 10 ratio exhibited an OCV of 0.98 V and produced a maximum peak power density (PPD) of 630 mW cm
−2
at an operating temperature of 220 °C. Our results demonstrate the significant impact of the TPP precursor on proton conductivity and fuel cell performance.
Proper phosphorus precursor selection during synthesis could help produce better tin-pyrophosphate powder and composite membranes with improved fuel cell performance.</description><subject>Ammonium</subject><subject>Ammonium hydroxide</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Open circuit voltage</subject><subject>Operating temperature</subject><subject>Phosphates</subject><subject>Phosphoric acid</subject><subject>Precursors</subject><subject>Protons</subject><subject>Pyrophosphates</subject><subject>Tin</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRsNRevAtRb8JqNvuRzbHUTygIUs9hm524Ke1mm6SF_fdOXbE35zLD8MzwvjNRdJnQ-4Sm4qGmoaJZyrg6iUaM5jTmmShO_-qyPI8m3q8oRklpIcQo2n7YNRCrSddY3zVVAOLtzikgpiVm0zm7N-0XCQ0QrINtibJtvVPB7E3oD4MBwa539rigamtigkdy01lvsANrUMHZdR_AX0Rnulp7mPzmcfT5_LSYvcbz95e32XQeq4zyEAvQkHHBsoIr4IXgFZRLzbhmkDDF1BLQXJkXeclUnqBBpSnXJcuhEhVfqnQc3Qx7rQ9GeoU6VIPiW5QikyJLOSsRuh0gNLfdgQ9yhe5b1CVZlmY8TQUtkLobKOWs9w607JzZVK6XCZWH08tHupj-nH6G8PUAO6_-uONrZFdrZK7-Y9JvH4aNRg</recordid><startdate>20200818</startdate><enddate>20200818</enddate><creator>Ramaiyan, Kannan P</creator><creator>Herrera, Sergio</creator><creator>Workman, Michael J</creator><creator>Semelsberger, Troy A</creator><creator>Atanasov, Vladimir</creator><creator>Kerres, Jochen</creator><creator>Maurya, Sandip</creator><creator>Kim, Yu Seung</creator><creator>Kreller, Cortney R</creator><creator>Mukundan, Rangachary</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5679-3930</orcidid><orcidid>https://orcid.org/0000-0003-1489-8707</orcidid><orcidid>https://orcid.org/0000-0002-5446-3890</orcidid><orcidid>https://orcid.org/0000-0003-0204-7550</orcidid><orcidid>https://orcid.org/0000-0003-2180-2494</orcidid><orcidid>https://orcid.org/0000-0002-7600-2008</orcidid><orcidid>https://orcid.org/0000000314898707</orcidid><orcidid>https://orcid.org/0000000256793930</orcidid><orcidid>https://orcid.org/0000000254463890</orcidid><orcidid>https://orcid.org/0000000321802494</orcidid><orcidid>https://orcid.org/0000000276002008</orcidid><orcidid>https://orcid.org/0000000302047550</orcidid></search><sort><creationdate>20200818</creationdate><title>Role of phosphate source in improving the proton conductivity of tin pyrophosphate and its composite electrolytes</title><author>Ramaiyan, Kannan P ; Herrera, Sergio ; Workman, Michael J ; Semelsberger, Troy A ; Atanasov, Vladimir ; Kerres, Jochen ; Maurya, Sandip ; Kim, Yu Seung ; Kreller, Cortney R ; Mukundan, Rangachary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-9efe4792467ce7697ae8bf27f2e12c2cbe749856582c51050cf07f825ea9a7bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonium</topic><topic>Ammonium hydroxide</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Open circuit voltage</topic><topic>Operating temperature</topic><topic>Phosphates</topic><topic>Phosphoric acid</topic><topic>Precursors</topic><topic>Protons</topic><topic>Pyrophosphates</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramaiyan, Kannan P</creatorcontrib><creatorcontrib>Herrera, Sergio</creatorcontrib><creatorcontrib>Workman, Michael J</creatorcontrib><creatorcontrib>Semelsberger, Troy A</creatorcontrib><creatorcontrib>Atanasov, Vladimir</creatorcontrib><creatorcontrib>Kerres, Jochen</creatorcontrib><creatorcontrib>Maurya, Sandip</creatorcontrib><creatorcontrib>Kim, Yu Seung</creatorcontrib><creatorcontrib>Kreller, Cortney R</creatorcontrib><creatorcontrib>Mukundan, Rangachary</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramaiyan, Kannan P</au><au>Herrera, Sergio</au><au>Workman, Michael J</au><au>Semelsberger, Troy A</au><au>Atanasov, Vladimir</au><au>Kerres, Jochen</au><au>Maurya, Sandip</au><au>Kim, Yu Seung</au><au>Kreller, Cortney R</au><au>Mukundan, Rangachary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of phosphate source in improving the proton conductivity of tin pyrophosphate and its composite electrolytes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-08-18</date><risdate>2020</risdate><volume>8</volume><issue>32</issue><spage>16345</spage><epage>16354</epage><pages>16345-16354</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Metal pyrophosphates (MPPs) in general and tin pyrophosphate (TPP) in particular have received significant interest in the last decade due to their potential as proton conductors for electrolyte application in intermediate temperature (IT)-fuel cells. However, for MPP based electrolytes, despite high reported proton conductivities, achieving good fuel cell performance and high open circuit voltage (OCV) remains a challenge with synthesis methods playing a crucial role in determining the final proton conductivity. Here we report the role of phosphate precursor in determining the TPP proton conductivity by examining five different precursors: (1) phosphoric acid (TPP-PA), (2) ammonium hydroxide + phosphoric acid (TPP-NH
4
OH), (3) diammonium phosphate (TPP-DAP), (4) tetramethylammonium sulphate + phosphoric acid (TPP-TMAP), and (5) tetrabutylammonium phosphate (TPP-TBAP), where a maximum conductivity of 88 mS cm
−1
at 200 °C was obtained for TPP prepared from the TBAP precursor. TPP prepared from all of the different precursors formed the crystalline cubic
Pa
3&cmb.macr; phase after sintering at 650 °C for 2.5 hours. Furthermore, TPP-TBAP/Nafion® composite membranes prepared with a 90 : 10 ratio exhibited an OCV of 0.98 V and produced a maximum peak power density (PPD) of 630 mW cm
−2
at an operating temperature of 220 °C. Our results demonstrate the significant impact of the TPP precursor on proton conductivity and fuel cell performance.
Proper phosphorus precursor selection during synthesis could help produce better tin-pyrophosphate powder and composite membranes with improved fuel cell performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta04327c</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5679-3930</orcidid><orcidid>https://orcid.org/0000-0003-1489-8707</orcidid><orcidid>https://orcid.org/0000-0002-5446-3890</orcidid><orcidid>https://orcid.org/0000-0003-0204-7550</orcidid><orcidid>https://orcid.org/0000-0003-2180-2494</orcidid><orcidid>https://orcid.org/0000-0002-7600-2008</orcidid><orcidid>https://orcid.org/0000000314898707</orcidid><orcidid>https://orcid.org/0000000256793930</orcidid><orcidid>https://orcid.org/0000000254463890</orcidid><orcidid>https://orcid.org/0000000321802494</orcidid><orcidid>https://orcid.org/0000000276002008</orcidid><orcidid>https://orcid.org/0000000302047550</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-08, Vol.8 (32), p.16345-16354 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_osti_scitechconnect_1643728 |
source | Royal Society of Chemistry |
subjects | Ammonium Ammonium hydroxide Conductivity Conductors Electrolytes Electrolytic cells Fuel cells Fuel technology Open circuit voltage Operating temperature Phosphates Phosphoric acid Precursors Protons Pyrophosphates Tin |
title | Role of phosphate source in improving the proton conductivity of tin pyrophosphate and its composite electrolytes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20phosphate%20source%20in%20improving%20the%20proton%20conductivity%20of%20tin%20pyrophosphate%20and%20its%20composite%20electrolytes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ramaiyan,%20Kannan%20P&rft.date=2020-08-18&rft.volume=8&rft.issue=32&rft.spage=16345&rft.epage=16354&rft.pages=16345-16354&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta04327c&rft_dat=%3Cproquest_osti_%3E2434733906%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-9efe4792467ce7697ae8bf27f2e12c2cbe749856582c51050cf07f825ea9a7bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434733906&rft_id=info:pmid/&rfr_iscdi=true |