Loading…

A Mixed Length Scale Model for Migrating Fluvial Bedforms

With the expansion of hydropower, in‐stream converters, flood‐protection infrastructures, and growing concerns on deltas fragile ecosystems, there is a pressing need to evaluate and monitor bedform sediment mass flux. It is critical to estimate real‐time bedform size and migration velocity and provi...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2020-08, Vol.47 (15), p.n/a
Main Authors: Guala, M., Heisel, M., Singh, A., Musa, M., Buscombe, D., Grams, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3940-7fa70710595a279e0239a0acc4f4967d121326ab56aa1fdb8524aa6825bebcdb3
cites cdi_FETCH-LOGICAL-a3940-7fa70710595a279e0239a0acc4f4967d121326ab56aa1fdb8524aa6825bebcdb3
container_end_page n/a
container_issue 15
container_start_page
container_title Geophysical research letters
container_volume 47
creator Guala, M.
Heisel, M.
Singh, A.
Musa, M.
Buscombe, D.
Grams, P.
description With the expansion of hydropower, in‐stream converters, flood‐protection infrastructures, and growing concerns on deltas fragile ecosystems, there is a pressing need to evaluate and monitor bedform sediment mass flux. It is critical to estimate real‐time bedform size and migration velocity and provide a theoretical framework to convert easily accessible time histories of bed elevations into spatially evolving patterns. We collected spatiotemporally resolved bathymetries from laboratory flumes and the Colorado River in statistically steady, homogeneous, subcritical flow conditions. Wave number and frequency spectra of bed elevations show compelling evidence of scale‐dependent velocity for the hierarchy of migrating bedforms observed in the laboratory and field. New scaling laws were applied to describe the full range of migration velocities as function of two dimensionless groups based on the bed shear velocity, sediment diameter, and water depth. Further simplification resulted in a mixed length scale model estimating scale‐dependent migration velocities, without requiring bedform classification or identification. Plain Language Summary Sand and gravel sediment in river beds often forms wave‐like patterns called ripples or dunes, which are collectively referred to as bedforms. The flow of the river causes bedforms to form and slowly travel downstream, thus contributing to sediment transport, erosion, and deposition along the river and to the evolution of deltas. Predicting how fast bedforms move can improve our ability to estimate sediment load carried by rivers. In this study, experimental measurements of bedforms in a laboratory facility and in the Colorado River are used to better understand bedform movement. This study confirms that smaller bedforms move faster than larger bedforms and provides a simple equation to predict the speed of moving bedforms of different sizes based on the bedform length, the size of the sediment grains, and the depth of the river. Key Points Scale‐dependent bedform migration velocities are confirmed using laboratory and field measurements Bedform velocity depends on stream depth, sediment diameter and shear velocity, reorganized into frictional and bankfull scaling parameters A mixed length scale is proposed in a simplified predictive model
doi_str_mv 10.1029/2019GL086625
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1648943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432936230</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3940-7fa70710595a279e0239a0acc4f4967d121326ab56aa1fdb8524aa6825bebcdb3</originalsourceid><addsrcrecordid>eNp90E1PwzAMBuAIgcQY3PgBEVwpOB9Nm-OYtoHUCYmPc-Sm6dapa0fSAfv3FJUDJ0625EeW_RJyyeCWAdd3HJheZJAqxeMjMmJayigFSI7JCED3PU_UKTkLYQMAAgQbET2hy-rLFTRzzapb0xeLtaPLtnA1LVvfD1ceu6pZ0Xm9_6iwpveu6AfbcE5OSqyDu_itY_I2n71OH6LsafE4nWQRCi0hSkpMIGEQ6xh5oh1woRHQWllKrZKCcSa4wjxWiKws8jTmElGlPM5dbotcjMnVsLcNXWWCrTpn17ZtGmc7w5RMtRQ9uh7Qzrfvexc6s2n3vunvMlwKroXi_b9jcjMo69sQvCvNzldb9AfDwPwkaP4m2HM-8M-qdod_rVk8ZwqUAvENxblunQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432936230</pqid></control><display><type>article</type><title>A Mixed Length Scale Model for Migrating Fluvial Bedforms</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Guala, M. ; Heisel, M. ; Singh, A. ; Musa, M. ; Buscombe, D. ; Grams, P.</creator><creatorcontrib>Guala, M. ; Heisel, M. ; Singh, A. ; Musa, M. ; Buscombe, D. ; Grams, P. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>With the expansion of hydropower, in‐stream converters, flood‐protection infrastructures, and growing concerns on deltas fragile ecosystems, there is a pressing need to evaluate and monitor bedform sediment mass flux. It is critical to estimate real‐time bedform size and migration velocity and provide a theoretical framework to convert easily accessible time histories of bed elevations into spatially evolving patterns. We collected spatiotemporally resolved bathymetries from laboratory flumes and the Colorado River in statistically steady, homogeneous, subcritical flow conditions. Wave number and frequency spectra of bed elevations show compelling evidence of scale‐dependent velocity for the hierarchy of migrating bedforms observed in the laboratory and field. New scaling laws were applied to describe the full range of migration velocities as function of two dimensionless groups based on the bed shear velocity, sediment diameter, and water depth. Further simplification resulted in a mixed length scale model estimating scale‐dependent migration velocities, without requiring bedform classification or identification. Plain Language Summary Sand and gravel sediment in river beds often forms wave‐like patterns called ripples or dunes, which are collectively referred to as bedforms. The flow of the river causes bedforms to form and slowly travel downstream, thus contributing to sediment transport, erosion, and deposition along the river and to the evolution of deltas. Predicting how fast bedforms move can improve our ability to estimate sediment load carried by rivers. In this study, experimental measurements of bedforms in a laboratory facility and in the Colorado River are used to better understand bedform movement. This study confirms that smaller bedforms move faster than larger bedforms and provides a simple equation to predict the speed of moving bedforms of different sizes based on the bedform length, the size of the sediment grains, and the depth of the river. Key Points Scale‐dependent bedform migration velocities are confirmed using laboratory and field measurements Bedform velocity depends on stream depth, sediment diameter and shear velocity, reorganized into frictional and bankfull scaling parameters A mixed length scale is proposed in a simplified predictive model</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2019GL086625</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Bed forms ; Bedforms ; Converters ; Deltas ; Diameters ; dune ; Flood management ; Flood protection ; Flumes ; Fluvial sediments ; Frequency spectra ; Frequency spectrum ; GEOSCIENCES ; Gravel ; Hydroelectric power ; Laboratories ; Length ; Mass flux ; river ; River beds ; Riverbeds ; Rivers ; Sand &amp; gravel ; Scale models ; Scaling ; Scaling laws ; Sediment ; Sediment load ; Sediment transport ; Sedimentary structures ; Sediments ; Subcritical flow ; Tranquil flow ; Velocity ; Water depth ; Wave number</subject><ispartof>Geophysical research letters, 2020-08, Vol.47 (15), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3940-7fa70710595a279e0239a0acc4f4967d121326ab56aa1fdb8524aa6825bebcdb3</citedby><cites>FETCH-LOGICAL-a3940-7fa70710595a279e0239a0acc4f4967d121326ab56aa1fdb8524aa6825bebcdb3</cites><orcidid>0000-0001-6217-5584 ; 0000-0002-4200-5550 ; 0000-0003-2172-6321 ; 0000-0001-8984-7467 ; 0000-0002-0873-0708 ; 0000-0002-9788-8119 ; 0000000297888119 ; 0000000208730708 ; 0000000162175584 ; 0000000242005550 ; 0000000189847467 ; 0000000321726321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019GL086625$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019GL086625$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,11513,27923,27924,46467,46891</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1648943$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guala, M.</creatorcontrib><creatorcontrib>Heisel, M.</creatorcontrib><creatorcontrib>Singh, A.</creatorcontrib><creatorcontrib>Musa, M.</creatorcontrib><creatorcontrib>Buscombe, D.</creatorcontrib><creatorcontrib>Grams, P.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>A Mixed Length Scale Model for Migrating Fluvial Bedforms</title><title>Geophysical research letters</title><description>With the expansion of hydropower, in‐stream converters, flood‐protection infrastructures, and growing concerns on deltas fragile ecosystems, there is a pressing need to evaluate and monitor bedform sediment mass flux. It is critical to estimate real‐time bedform size and migration velocity and provide a theoretical framework to convert easily accessible time histories of bed elevations into spatially evolving patterns. We collected spatiotemporally resolved bathymetries from laboratory flumes and the Colorado River in statistically steady, homogeneous, subcritical flow conditions. Wave number and frequency spectra of bed elevations show compelling evidence of scale‐dependent velocity for the hierarchy of migrating bedforms observed in the laboratory and field. New scaling laws were applied to describe the full range of migration velocities as function of two dimensionless groups based on the bed shear velocity, sediment diameter, and water depth. Further simplification resulted in a mixed length scale model estimating scale‐dependent migration velocities, without requiring bedform classification or identification. Plain Language Summary Sand and gravel sediment in river beds often forms wave‐like patterns called ripples or dunes, which are collectively referred to as bedforms. The flow of the river causes bedforms to form and slowly travel downstream, thus contributing to sediment transport, erosion, and deposition along the river and to the evolution of deltas. Predicting how fast bedforms move can improve our ability to estimate sediment load carried by rivers. In this study, experimental measurements of bedforms in a laboratory facility and in the Colorado River are used to better understand bedform movement. This study confirms that smaller bedforms move faster than larger bedforms and provides a simple equation to predict the speed of moving bedforms of different sizes based on the bedform length, the size of the sediment grains, and the depth of the river. Key Points Scale‐dependent bedform migration velocities are confirmed using laboratory and field measurements Bedform velocity depends on stream depth, sediment diameter and shear velocity, reorganized into frictional and bankfull scaling parameters A mixed length scale is proposed in a simplified predictive model</description><subject>Bed forms</subject><subject>Bedforms</subject><subject>Converters</subject><subject>Deltas</subject><subject>Diameters</subject><subject>dune</subject><subject>Flood management</subject><subject>Flood protection</subject><subject>Flumes</subject><subject>Fluvial sediments</subject><subject>Frequency spectra</subject><subject>Frequency spectrum</subject><subject>GEOSCIENCES</subject><subject>Gravel</subject><subject>Hydroelectric power</subject><subject>Laboratories</subject><subject>Length</subject><subject>Mass flux</subject><subject>river</subject><subject>River beds</subject><subject>Riverbeds</subject><subject>Rivers</subject><subject>Sand &amp; gravel</subject><subject>Scale models</subject><subject>Scaling</subject><subject>Scaling laws</subject><subject>Sediment</subject><subject>Sediment load</subject><subject>Sediment transport</subject><subject>Sedimentary structures</subject><subject>Sediments</subject><subject>Subcritical flow</subject><subject>Tranquil flow</subject><subject>Velocity</subject><subject>Water depth</subject><subject>Wave number</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1PwzAMBuAIgcQY3PgBEVwpOB9Nm-OYtoHUCYmPc-Sm6dapa0fSAfv3FJUDJ0625EeW_RJyyeCWAdd3HJheZJAqxeMjMmJayigFSI7JCED3PU_UKTkLYQMAAgQbET2hy-rLFTRzzapb0xeLtaPLtnA1LVvfD1ceu6pZ0Xm9_6iwpveu6AfbcE5OSqyDu_itY_I2n71OH6LsafE4nWQRCi0hSkpMIGEQ6xh5oh1woRHQWllKrZKCcSa4wjxWiKws8jTmElGlPM5dbotcjMnVsLcNXWWCrTpn17ZtGmc7w5RMtRQ9uh7Qzrfvexc6s2n3vunvMlwKroXi_b9jcjMo69sQvCvNzldb9AfDwPwkaP4m2HM-8M-qdod_rVk8ZwqUAvENxblunQ</recordid><startdate>20200816</startdate><enddate>20200816</enddate><creator>Guala, M.</creator><creator>Heisel, M.</creator><creator>Singh, A.</creator><creator>Musa, M.</creator><creator>Buscombe, D.</creator><creator>Grams, P.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6217-5584</orcidid><orcidid>https://orcid.org/0000-0002-4200-5550</orcidid><orcidid>https://orcid.org/0000-0003-2172-6321</orcidid><orcidid>https://orcid.org/0000-0001-8984-7467</orcidid><orcidid>https://orcid.org/0000-0002-0873-0708</orcidid><orcidid>https://orcid.org/0000-0002-9788-8119</orcidid><orcidid>https://orcid.org/0000000297888119</orcidid><orcidid>https://orcid.org/0000000208730708</orcidid><orcidid>https://orcid.org/0000000162175584</orcidid><orcidid>https://orcid.org/0000000242005550</orcidid><orcidid>https://orcid.org/0000000189847467</orcidid><orcidid>https://orcid.org/0000000321726321</orcidid></search><sort><creationdate>20200816</creationdate><title>A Mixed Length Scale Model for Migrating Fluvial Bedforms</title><author>Guala, M. ; Heisel, M. ; Singh, A. ; Musa, M. ; Buscombe, D. ; Grams, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3940-7fa70710595a279e0239a0acc4f4967d121326ab56aa1fdb8524aa6825bebcdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bed forms</topic><topic>Bedforms</topic><topic>Converters</topic><topic>Deltas</topic><topic>Diameters</topic><topic>dune</topic><topic>Flood management</topic><topic>Flood protection</topic><topic>Flumes</topic><topic>Fluvial sediments</topic><topic>Frequency spectra</topic><topic>Frequency spectrum</topic><topic>GEOSCIENCES</topic><topic>Gravel</topic><topic>Hydroelectric power</topic><topic>Laboratories</topic><topic>Length</topic><topic>Mass flux</topic><topic>river</topic><topic>River beds</topic><topic>Riverbeds</topic><topic>Rivers</topic><topic>Sand &amp; gravel</topic><topic>Scale models</topic><topic>Scaling</topic><topic>Scaling laws</topic><topic>Sediment</topic><topic>Sediment load</topic><topic>Sediment transport</topic><topic>Sedimentary structures</topic><topic>Sediments</topic><topic>Subcritical flow</topic><topic>Tranquil flow</topic><topic>Velocity</topic><topic>Water depth</topic><topic>Wave number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guala, M.</creatorcontrib><creatorcontrib>Heisel, M.</creatorcontrib><creatorcontrib>Singh, A.</creatorcontrib><creatorcontrib>Musa, M.</creatorcontrib><creatorcontrib>Buscombe, D.</creatorcontrib><creatorcontrib>Grams, P.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guala, M.</au><au>Heisel, M.</au><au>Singh, A.</au><au>Musa, M.</au><au>Buscombe, D.</au><au>Grams, P.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mixed Length Scale Model for Migrating Fluvial Bedforms</atitle><jtitle>Geophysical research letters</jtitle><date>2020-08-16</date><risdate>2020</risdate><volume>47</volume><issue>15</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>With the expansion of hydropower, in‐stream converters, flood‐protection infrastructures, and growing concerns on deltas fragile ecosystems, there is a pressing need to evaluate and monitor bedform sediment mass flux. It is critical to estimate real‐time bedform size and migration velocity and provide a theoretical framework to convert easily accessible time histories of bed elevations into spatially evolving patterns. We collected spatiotemporally resolved bathymetries from laboratory flumes and the Colorado River in statistically steady, homogeneous, subcritical flow conditions. Wave number and frequency spectra of bed elevations show compelling evidence of scale‐dependent velocity for the hierarchy of migrating bedforms observed in the laboratory and field. New scaling laws were applied to describe the full range of migration velocities as function of two dimensionless groups based on the bed shear velocity, sediment diameter, and water depth. Further simplification resulted in a mixed length scale model estimating scale‐dependent migration velocities, without requiring bedform classification or identification. Plain Language Summary Sand and gravel sediment in river beds often forms wave‐like patterns called ripples or dunes, which are collectively referred to as bedforms. The flow of the river causes bedforms to form and slowly travel downstream, thus contributing to sediment transport, erosion, and deposition along the river and to the evolution of deltas. Predicting how fast bedforms move can improve our ability to estimate sediment load carried by rivers. In this study, experimental measurements of bedforms in a laboratory facility and in the Colorado River are used to better understand bedform movement. This study confirms that smaller bedforms move faster than larger bedforms and provides a simple equation to predict the speed of moving bedforms of different sizes based on the bedform length, the size of the sediment grains, and the depth of the river. Key Points Scale‐dependent bedform migration velocities are confirmed using laboratory and field measurements Bedform velocity depends on stream depth, sediment diameter and shear velocity, reorganized into frictional and bankfull scaling parameters A mixed length scale is proposed in a simplified predictive model</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2019GL086625</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6217-5584</orcidid><orcidid>https://orcid.org/0000-0002-4200-5550</orcidid><orcidid>https://orcid.org/0000-0003-2172-6321</orcidid><orcidid>https://orcid.org/0000-0001-8984-7467</orcidid><orcidid>https://orcid.org/0000-0002-0873-0708</orcidid><orcidid>https://orcid.org/0000-0002-9788-8119</orcidid><orcidid>https://orcid.org/0000000297888119</orcidid><orcidid>https://orcid.org/0000000208730708</orcidid><orcidid>https://orcid.org/0000000162175584</orcidid><orcidid>https://orcid.org/0000000242005550</orcidid><orcidid>https://orcid.org/0000000189847467</orcidid><orcidid>https://orcid.org/0000000321726321</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2020-08, Vol.47 (15), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_osti_scitechconnect_1648943
source Wiley-Blackwell AGU Digital Library
subjects Bed forms
Bedforms
Converters
Deltas
Diameters
dune
Flood management
Flood protection
Flumes
Fluvial sediments
Frequency spectra
Frequency spectrum
GEOSCIENCES
Gravel
Hydroelectric power
Laboratories
Length
Mass flux
river
River beds
Riverbeds
Rivers
Sand & gravel
Scale models
Scaling
Scaling laws
Sediment
Sediment load
Sediment transport
Sedimentary structures
Sediments
Subcritical flow
Tranquil flow
Velocity
Water depth
Wave number
title A Mixed Length Scale Model for Migrating Fluvial Bedforms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mixed%20Length%20Scale%20Model%20for%20Migrating%20Fluvial%20Bedforms&rft.jtitle=Geophysical%20research%20letters&rft.au=Guala,%20M.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-08-16&rft.volume=47&rft.issue=15&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2019GL086625&rft_dat=%3Cproquest_osti_%3E2432936230%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3940-7fa70710595a279e0239a0acc4f4967d121326ab56aa1fdb8524aa6825bebcdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2432936230&rft_id=info:pmid/&rfr_iscdi=true