Loading…
Detecting control system misbehavior by fingerprinting programmable logic controller functionality
In recent years, attacks such as the Stuxnet malware have demonstrated that cyberattacks against control systems cause extensive damage. These attacks can result in physical damage to the networked systems under their control. In this paper, we discuss our approach for detecting such attacks by dist...
Saved in:
Published in: | International journal of critical infrastructure protection 2019-09, Vol.26, p.100306, Article 100306 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, attacks such as the Stuxnet malware have demonstrated that cyberattacks against control systems cause extensive damage. These attacks can result in physical damage to the networked systems under their control. In this paper, we discuss our approach for detecting such attacks by distinguishing between programs running on a programmable logic controller (PLC) without having to monitor communications. Using power signatures generated by an attached, high-frequency power measurement device, we can identify what a PLC is doing and when an attack may have altered what the PLC should be doing. To accomplish this, we generated labeled data for testing our methods and applied feature engineering techniques and machine learning models. The results demonstrate that Random Forests and Convolutional Neural Networks classify programs with up to 98% accuracy for major program differences and 84% accuracy for minor differences. Our results can be used for both online and offline applications. |
---|---|
ISSN: | 1874-5482 2212-2087 |
DOI: | 10.1016/j.ijcip.2019.100306 |