Loading…

Effects of fuel composition and octane sensitivity on polycyclic aromatic hydrocarbon and soot emissions of gasoline–ethanol blend surrogates

The sooting propensity of a fuel is closely coupled with the fuel composition and chemistry. A detailed understanding of their effects is, therefore, needed to develop next-generation fuels which can minimize particulate emissions. With this overarching goal, the present work numerically investigate...

Full description

Saved in:
Bibliographic Details
Published in:Combustion and flame 2020-11, Vol.221 (C), p.476-486
Main Authors: Kalvakala, Krishna C., Pal, Pinaki, Aggarwal, Suresh K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The sooting propensity of a fuel is closely coupled with the fuel composition and chemistry. A detailed understanding of their effects is, therefore, needed to develop next-generation fuels which can minimize particulate emissions. With this overarching goal, the present work numerically investigates the effects of fuel composition and octane sensitivity (S) on polycyclic aromatic hydrocarbons (PAH) and soot emissions, for four-component gasoline–ethanol blend surrogates comprising isooctane, n-heptane, toluene, and ethanol. A partially-premixed counterflow flame is chosen as the canonical configuration for this study and simulations are performed using CHEMKIN-Pro-employing a kinetic mechanism developed by Park et al. (2017). In addition, a, detailed soot model based on the sectional method is used to capture the spatial characteristics of soot emissions. The kinetic mechanism and soot model are validated using available experimental data for various targets. A total of 86 TPRF-E mixtures, spanning a wide range of concentration of each component, and a wide range of S are analyzed. The effect of each non-paraffinic fuel component on the resultant PAH and soot emissions is investigated. PAH and soot emissions are found to vary significantly depending upon the blend composition. Based on the parametric sweeps, a regression analysis is carried out to identify global parameters that govern the formation of PAHs and soot. The analysis shows that both toluene content and S have a prominent effect on the formation of PAHs and soot, with toluene content having a stronger impact. Moreover, larger PAHs have higher dependency on toluene content and S. Furthermore, a detailed analysis is carried out to understand the physical and chemical phenomena associated with the observed trends of PAH and soot emissions.
ISSN:0010-2180
1556-2921
DOI:10.1016/j.combustflame.2020.08.019