Loading…

Stabilization of a nanoporous NiCu dilute alloy catalyst for non-oxidative ethanol dehydrogenation

Producing acetaldehyde, an important industrial chemical, by direct catalytic non-oxidative dehydrogenation of ethanol presents many advantages over current production methods, including generating hydrogen. However, a stable, active, and selective catalyst is currently unavailable. This work demons...

Full description

Saved in:
Bibliographic Details
Published in:Catalysis science & technology 2020-07, Vol.10 (15)
Main Authors: Janvelyan, Nare, van Spronsen, Matthijs A., Wu, Cheng Hao, Qi, Zhen, Montemore, Matthew M., Shan, Junjun, Zakharov, Dmitri N., Xu, Fang, Boscoboinik, J. Anibal, Salmeron, Miquel B., Stach, Eric A., Flyztani-Stephanopoulos, Maria, Biener, Juergen, Friend, Cynthia M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 15
container_start_page
container_title Catalysis science & technology
container_volume 10
creator Janvelyan, Nare
van Spronsen, Matthijs A.
Wu, Cheng Hao
Qi, Zhen
Montemore, Matthew M.
Shan, Junjun
Zakharov, Dmitri N.
Xu, Fang
Boscoboinik, J. Anibal
Salmeron, Miquel B.
Stach, Eric A.
Flyztani-Stephanopoulos, Maria
Biener, Juergen
Friend, Cynthia M.
description Producing acetaldehyde, an important industrial chemical, by direct catalytic non-oxidative dehydrogenation of ethanol presents many advantages over current production methods, including generating hydrogen. However, a stable, active, and selective catalyst is currently unavailable. This work demonstrates that the high activity and selectivity of nanoporous (np) NiCu for this reaction can be stabilized by keeping the catalyst in a metastable (“kinetically trapped”) state. Using a combination of in situ ambient-pressure and ex situ X-ray photoelectron spectroscopy, environmental transmission electron microscopy, and density functional theory calculations enabled correlating changes in surface composition with the changes in activity and stability upon treatment of np NiCu with H2 and O2. Furthermore, reduction of Ni-doped nanoporous Cu by H2 exposure enhanced the initial activity but led to complete catalyst deactivation within ~40 hours. In contrast, O2 pretreatment of the same catalyst increased both activity and long-term stability, with only 15% activity loss over 40 hours. The stability of np NiCu as a catalyst inversely correlates with the amount of metallic Ni at the surface, which is enriched by the H2 pretreatment, while the O2 pretreatment leads to a kinetically trapped Ni2+ subsurface state. This work emphasizes that detailed understanding of pretreatment-induced nanoscale structural and compositional changes is necessary to optimize catalyst performance.
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1657156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1657156</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_16571563</originalsourceid><addsrcrecordid>eNqNjD0LwjAURYMoWLT_4eFe6Efa6lwUJxfdS5qkNhLypHkV66-3iDh7l3uHc-6MBWnMecTLIpn_dp4tWej9LZ7Cd0m8TQPWnEk0xpqXIIMOsAUBTji8Y4-Dh5OpBlDGDqRBWIsjSEHCjp6gxR4cugifRk3yQ4OmbjItKN2Nqserdp_TNVu0wnodfnvFNof9pTpG6MnUXhrSspPonJZUJ0VeJnmR_QW9ASIwSIs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stabilization of a nanoporous NiCu dilute alloy catalyst for non-oxidative ethanol dehydrogenation</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Janvelyan, Nare ; van Spronsen, Matthijs A. ; Wu, Cheng Hao ; Qi, Zhen ; Montemore, Matthew M. ; Shan, Junjun ; Zakharov, Dmitri N. ; Xu, Fang ; Boscoboinik, J. Anibal ; Salmeron, Miquel B. ; Stach, Eric A. ; Flyztani-Stephanopoulos, Maria ; Biener, Juergen ; Friend, Cynthia M.</creator><creatorcontrib>Janvelyan, Nare ; van Spronsen, Matthijs A. ; Wu, Cheng Hao ; Qi, Zhen ; Montemore, Matthew M. ; Shan, Junjun ; Zakharov, Dmitri N. ; Xu, Fang ; Boscoboinik, J. Anibal ; Salmeron, Miquel B. ; Stach, Eric A. ; Flyztani-Stephanopoulos, Maria ; Biener, Juergen ; Friend, Cynthia M. ; Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN) and National Synchrotron Light Source II (NSLS-II) ; Energy Frontier Research Centers (EFRC) (United States). Center for Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC) ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Producing acetaldehyde, an important industrial chemical, by direct catalytic non-oxidative dehydrogenation of ethanol presents many advantages over current production methods, including generating hydrogen. However, a stable, active, and selective catalyst is currently unavailable. This work demonstrates that the high activity and selectivity of nanoporous (np) NiCu for this reaction can be stabilized by keeping the catalyst in a metastable (“kinetically trapped”) state. Using a combination of in situ ambient-pressure and ex situ X-ray photoelectron spectroscopy, environmental transmission electron microscopy, and density functional theory calculations enabled correlating changes in surface composition with the changes in activity and stability upon treatment of np NiCu with H2 and O2. Furthermore, reduction of Ni-doped nanoporous Cu by H2 exposure enhanced the initial activity but led to complete catalyst deactivation within ~40 hours. In contrast, O2 pretreatment of the same catalyst increased both activity and long-term stability, with only 15% activity loss over 40 hours. The stability of np NiCu as a catalyst inversely correlates with the amount of metallic Ni at the surface, which is enriched by the H2 pretreatment, while the O2 pretreatment leads to a kinetically trapped Ni2+ subsurface state. This work emphasizes that detailed understanding of pretreatment-induced nanoscale structural and compositional changes is necessary to optimize catalyst performance.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>MATERIALS SCIENCE ; NANOSCIENCE AND NANOTECHNOLOGY</subject><ispartof>Catalysis science &amp; technology, 2020-07, Vol.10 (15)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000250907079 ; 0000000264820839 ; 0000000281660275 ; 0000000286739046 ; 0000000241571745 ; 0000000237223924 ; 0000000251362816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1657156$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Janvelyan, Nare</creatorcontrib><creatorcontrib>van Spronsen, Matthijs A.</creatorcontrib><creatorcontrib>Wu, Cheng Hao</creatorcontrib><creatorcontrib>Qi, Zhen</creatorcontrib><creatorcontrib>Montemore, Matthew M.</creatorcontrib><creatorcontrib>Shan, Junjun</creatorcontrib><creatorcontrib>Zakharov, Dmitri N.</creatorcontrib><creatorcontrib>Xu, Fang</creatorcontrib><creatorcontrib>Boscoboinik, J. Anibal</creatorcontrib><creatorcontrib>Salmeron, Miquel B.</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Flyztani-Stephanopoulos, Maria</creatorcontrib><creatorcontrib>Biener, Juergen</creatorcontrib><creatorcontrib>Friend, Cynthia M.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN) and National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Stabilization of a nanoporous NiCu dilute alloy catalyst for non-oxidative ethanol dehydrogenation</title><title>Catalysis science &amp; technology</title><description>Producing acetaldehyde, an important industrial chemical, by direct catalytic non-oxidative dehydrogenation of ethanol presents many advantages over current production methods, including generating hydrogen. However, a stable, active, and selective catalyst is currently unavailable. This work demonstrates that the high activity and selectivity of nanoporous (np) NiCu for this reaction can be stabilized by keeping the catalyst in a metastable (“kinetically trapped”) state. Using a combination of in situ ambient-pressure and ex situ X-ray photoelectron spectroscopy, environmental transmission electron microscopy, and density functional theory calculations enabled correlating changes in surface composition with the changes in activity and stability upon treatment of np NiCu with H2 and O2. Furthermore, reduction of Ni-doped nanoporous Cu by H2 exposure enhanced the initial activity but led to complete catalyst deactivation within ~40 hours. In contrast, O2 pretreatment of the same catalyst increased both activity and long-term stability, with only 15% activity loss over 40 hours. The stability of np NiCu as a catalyst inversely correlates with the amount of metallic Ni at the surface, which is enriched by the H2 pretreatment, while the O2 pretreatment leads to a kinetically trapped Ni2+ subsurface state. This work emphasizes that detailed understanding of pretreatment-induced nanoscale structural and compositional changes is necessary to optimize catalyst performance.</description><subject>MATERIALS SCIENCE</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjD0LwjAURYMoWLT_4eFe6Efa6lwUJxfdS5qkNhLypHkV66-3iDh7l3uHc-6MBWnMecTLIpn_dp4tWej9LZ7Cd0m8TQPWnEk0xpqXIIMOsAUBTji8Y4-Dh5OpBlDGDqRBWIsjSEHCjp6gxR4cugifRk3yQ4OmbjItKN2Nqserdp_TNVu0wnodfnvFNof9pTpG6MnUXhrSspPonJZUJ0VeJnmR_QW9ASIwSIs</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Janvelyan, Nare</creator><creator>van Spronsen, Matthijs A.</creator><creator>Wu, Cheng Hao</creator><creator>Qi, Zhen</creator><creator>Montemore, Matthew M.</creator><creator>Shan, Junjun</creator><creator>Zakharov, Dmitri N.</creator><creator>Xu, Fang</creator><creator>Boscoboinik, J. Anibal</creator><creator>Salmeron, Miquel B.</creator><creator>Stach, Eric A.</creator><creator>Flyztani-Stephanopoulos, Maria</creator><creator>Biener, Juergen</creator><creator>Friend, Cynthia M.</creator><general>Royal Society of Chemistry</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000250907079</orcidid><orcidid>https://orcid.org/0000000264820839</orcidid><orcidid>https://orcid.org/0000000281660275</orcidid><orcidid>https://orcid.org/0000000286739046</orcidid><orcidid>https://orcid.org/0000000241571745</orcidid><orcidid>https://orcid.org/0000000237223924</orcidid><orcidid>https://orcid.org/0000000251362816</orcidid></search><sort><creationdate>20200707</creationdate><title>Stabilization of a nanoporous NiCu dilute alloy catalyst for non-oxidative ethanol dehydrogenation</title><author>Janvelyan, Nare ; van Spronsen, Matthijs A. ; Wu, Cheng Hao ; Qi, Zhen ; Montemore, Matthew M. ; Shan, Junjun ; Zakharov, Dmitri N. ; Xu, Fang ; Boscoboinik, J. Anibal ; Salmeron, Miquel B. ; Stach, Eric A. ; Flyztani-Stephanopoulos, Maria ; Biener, Juergen ; Friend, Cynthia M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_16571563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>MATERIALS SCIENCE</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janvelyan, Nare</creatorcontrib><creatorcontrib>van Spronsen, Matthijs A.</creatorcontrib><creatorcontrib>Wu, Cheng Hao</creatorcontrib><creatorcontrib>Qi, Zhen</creatorcontrib><creatorcontrib>Montemore, Matthew M.</creatorcontrib><creatorcontrib>Shan, Junjun</creatorcontrib><creatorcontrib>Zakharov, Dmitri N.</creatorcontrib><creatorcontrib>Xu, Fang</creatorcontrib><creatorcontrib>Boscoboinik, J. Anibal</creatorcontrib><creatorcontrib>Salmeron, Miquel B.</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Flyztani-Stephanopoulos, Maria</creatorcontrib><creatorcontrib>Biener, Juergen</creatorcontrib><creatorcontrib>Friend, Cynthia M.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN) and National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC)</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janvelyan, Nare</au><au>van Spronsen, Matthijs A.</au><au>Wu, Cheng Hao</au><au>Qi, Zhen</au><au>Montemore, Matthew M.</au><au>Shan, Junjun</au><au>Zakharov, Dmitri N.</au><au>Xu, Fang</au><au>Boscoboinik, J. Anibal</au><au>Salmeron, Miquel B.</au><au>Stach, Eric A.</au><au>Flyztani-Stephanopoulos, Maria</au><au>Biener, Juergen</au><au>Friend, Cynthia M.</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN) and National Synchrotron Light Source II (NSLS-II)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC)</aucorp><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of a nanoporous NiCu dilute alloy catalyst for non-oxidative ethanol dehydrogenation</atitle><jtitle>Catalysis science &amp; technology</jtitle><date>2020-07-07</date><risdate>2020</risdate><volume>10</volume><issue>15</issue><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>Producing acetaldehyde, an important industrial chemical, by direct catalytic non-oxidative dehydrogenation of ethanol presents many advantages over current production methods, including generating hydrogen. However, a stable, active, and selective catalyst is currently unavailable. This work demonstrates that the high activity and selectivity of nanoporous (np) NiCu for this reaction can be stabilized by keeping the catalyst in a metastable (“kinetically trapped”) state. Using a combination of in situ ambient-pressure and ex situ X-ray photoelectron spectroscopy, environmental transmission electron microscopy, and density functional theory calculations enabled correlating changes in surface composition with the changes in activity and stability upon treatment of np NiCu with H2 and O2. Furthermore, reduction of Ni-doped nanoporous Cu by H2 exposure enhanced the initial activity but led to complete catalyst deactivation within ~40 hours. In contrast, O2 pretreatment of the same catalyst increased both activity and long-term stability, with only 15% activity loss over 40 hours. The stability of np NiCu as a catalyst inversely correlates with the amount of metallic Ni at the surface, which is enriched by the H2 pretreatment, while the O2 pretreatment leads to a kinetically trapped Ni2+ subsurface state. This work emphasizes that detailed understanding of pretreatment-induced nanoscale structural and compositional changes is necessary to optimize catalyst performance.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><orcidid>https://orcid.org/0000000250907079</orcidid><orcidid>https://orcid.org/0000000264820839</orcidid><orcidid>https://orcid.org/0000000281660275</orcidid><orcidid>https://orcid.org/0000000286739046</orcidid><orcidid>https://orcid.org/0000000241571745</orcidid><orcidid>https://orcid.org/0000000237223924</orcidid><orcidid>https://orcid.org/0000000251362816</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2020-07, Vol.10 (15)
issn 2044-4753
2044-4761
language eng
recordid cdi_osti_scitechconnect_1657156
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects MATERIALS SCIENCE
NANOSCIENCE AND NANOTECHNOLOGY
title Stabilization of a nanoporous NiCu dilute alloy catalyst for non-oxidative ethanol dehydrogenation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20a%20nanoporous%20NiCu%20dilute%20alloy%20catalyst%20for%20non-oxidative%20ethanol%20dehydrogenation&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Janvelyan,%20Nare&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States).%20Center%20for%20Functional%20Nanomaterials%20(CFN)%20and%20National%20Synchrotron%20Light%20Source%20II%20(NSLS-II)&rft.date=2020-07-07&rft.volume=10&rft.issue=15&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/&rft_dat=%3Costi%3E1657156%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_16571563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true