Loading…
Control of Molecular Bonding Strength on Metal Catalysts with Organic Monolayers for CO2 Reduction
The development of separate levers for controlling the bonding strength of different reactive species on catalyst surfaces is challenging but essential for the design of highly active and selective catalysts. For example, during CO2 reduction, production of CO often requires balancing a trade-off be...
Saved in:
Published in: | Journal of the American Chemical Society 2020-03, Vol.142 (11), p.5184-5193 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5193 |
container_issue | 11 |
container_start_page | 5184 |
container_title | Journal of the American Chemical Society |
container_volume | 142 |
creator | Zhang, Jing Deo, Shyam Janik, Michael J Medlin, J. Will |
description | The development of separate levers for controlling the bonding strength of different reactive species on catalyst surfaces is challenging but essential for the design of highly active and selective catalysts. For example, during CO2 reduction, production of CO often requires balancing a trade-off between the adsorption strength of the reactant and product states: weak binding of CO is desirable from a selectivity perspective, but weak binding of CO2 leads to low activity. Here, we demonstrate a new method of controlling both CO2 adsorption and CO desorption over supported metal catalysts by employing a single self-assembly step where organic monolayer films were deposited on the catalyst support. Binding of phosphonic acid monolayers on supported Pt and Pd catalysts weakened CO binding via a through-support effect. The weakened CO adsorption was generally accompanied by decreased adsorption and reactivity of CO2. However, by the incorporation of basic amine functions at controlled positions in the modifying film, strong CO2 adsorption and hydrogenation reactivity could be restored. Thus, both through-surface and through-space interactions could be manipulated by design of the organic modifiers. After surface modification, the catalysts exhibited significantly improved selectivity (up to ∼99% at conversions near 50%) and activity toward CO production. Moreover, the rate of deactivation was notably reduced due to prevention of CO poisoning. |
doi_str_mv | 10.1021/jacs.9b12980 |
format | article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1658614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e35170334</sourcerecordid><originalsourceid>FETCH-LOGICAL-a286t-2716e143721161f6cade3ddba761a962241a8ef6baaff822fa4bea0ff4b2ce873</originalsourceid><addsrcrecordid>eNotkEtrwzAQhEVpoWnaW3-A6KkXp9q1IyvH1vQFCYE-zmItS4mDkUBSKPn3dUgus8ywOywfY_cgZiAQnnZk0mzRAi6UuGATmKMo5oDykk2EEFjUSpbX7Cal3WgrVDBhbRN8jmHgwfFVGKzZDxT5S_Bd7zf8O0frN3nLg-crm2ngDY16SDnxv37M13FDvjfjqQ8DHWxM3IXImzXyL9vtTe6Dv2VXjoZk785zyn7fXn-aj2K5fv9snpcFoZK5wBqkhaqsEUCCk4Y6W3ZdS7UEWkjECkhZJ1si5xSio6q1JJyrWjRW1eWUPZx6Q8q9TqbP1mxN8N6arEHOlRzbp-zxtDSi0ruwj358SYPQR4D6CFCfAZb_velk5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Control of Molecular Bonding Strength on Metal Catalysts with Organic Monolayers for CO2 Reduction</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Jing ; Deo, Shyam ; Janik, Michael J ; Medlin, J. Will</creator><creatorcontrib>Zhang, Jing ; Deo, Shyam ; Janik, Michael J ; Medlin, J. Will ; Univ. of Colorado, Boulder, CO (United States)</creatorcontrib><description>The development of separate levers for controlling the bonding strength of different reactive species on catalyst surfaces is challenging but essential for the design of highly active and selective catalysts. For example, during CO2 reduction, production of CO often requires balancing a trade-off between the adsorption strength of the reactant and product states: weak binding of CO is desirable from a selectivity perspective, but weak binding of CO2 leads to low activity. Here, we demonstrate a new method of controlling both CO2 adsorption and CO desorption over supported metal catalysts by employing a single self-assembly step where organic monolayer films were deposited on the catalyst support. Binding of phosphonic acid monolayers on supported Pt and Pd catalysts weakened CO binding via a through-support effect. The weakened CO adsorption was generally accompanied by decreased adsorption and reactivity of CO2. However, by the incorporation of basic amine functions at controlled positions in the modifying film, strong CO2 adsorption and hydrogenation reactivity could be restored. Thus, both through-surface and through-space interactions could be manipulated by design of the organic modifiers. After surface modification, the catalysts exhibited significantly improved selectivity (up to ∼99% at conversions near 50%) and activity toward CO production. Moreover, the rate of deactivation was notably reduced due to prevention of CO poisoning.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b12980</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Catalysts ; Deposition ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Metals ; Selectivity</subject><ispartof>Journal of the American Chemical Society, 2020-03, Vol.142 (11), p.5184-5193</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8213-4314 ; 0000-0001-9975-0650 ; 0000-0003-2404-2443 ; 0000000282134314 ; 0000000324042443 ; 0000000199750650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1658614$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Deo, Shyam</creatorcontrib><creatorcontrib>Janik, Michael J</creatorcontrib><creatorcontrib>Medlin, J. Will</creatorcontrib><creatorcontrib>Univ. of Colorado, Boulder, CO (United States)</creatorcontrib><title>Control of Molecular Bonding Strength on Metal Catalysts with Organic Monolayers for CO2 Reduction</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The development of separate levers for controlling the bonding strength of different reactive species on catalyst surfaces is challenging but essential for the design of highly active and selective catalysts. For example, during CO2 reduction, production of CO often requires balancing a trade-off between the adsorption strength of the reactant and product states: weak binding of CO is desirable from a selectivity perspective, but weak binding of CO2 leads to low activity. Here, we demonstrate a new method of controlling both CO2 adsorption and CO desorption over supported metal catalysts by employing a single self-assembly step where organic monolayer films were deposited on the catalyst support. Binding of phosphonic acid monolayers on supported Pt and Pd catalysts weakened CO binding via a through-support effect. The weakened CO adsorption was generally accompanied by decreased adsorption and reactivity of CO2. However, by the incorporation of basic amine functions at controlled positions in the modifying film, strong CO2 adsorption and hydrogenation reactivity could be restored. Thus, both through-surface and through-space interactions could be manipulated by design of the organic modifiers. After surface modification, the catalysts exhibited significantly improved selectivity (up to ∼99% at conversions near 50%) and activity toward CO production. Moreover, the rate of deactivation was notably reduced due to prevention of CO poisoning.</description><subject>Adsorption</subject><subject>Catalysts</subject><subject>Deposition</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Metals</subject><subject>Selectivity</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkEtrwzAQhEVpoWnaW3-A6KkXp9q1IyvH1vQFCYE-zmItS4mDkUBSKPn3dUgus8ywOywfY_cgZiAQnnZk0mzRAi6UuGATmKMo5oDykk2EEFjUSpbX7Cal3WgrVDBhbRN8jmHgwfFVGKzZDxT5S_Bd7zf8O0frN3nLg-crm2ngDY16SDnxv37M13FDvjfjqQ8DHWxM3IXImzXyL9vtTe6Dv2VXjoZk785zyn7fXn-aj2K5fv9snpcFoZK5wBqkhaqsEUCCk4Y6W3ZdS7UEWkjECkhZJ1si5xSio6q1JJyrWjRW1eWUPZx6Q8q9TqbP1mxN8N6arEHOlRzbp-zxtDSi0ruwj358SYPQR4D6CFCfAZb_velk5Q</recordid><startdate>20200318</startdate><enddate>20200318</enddate><creator>Zhang, Jing</creator><creator>Deo, Shyam</creator><creator>Janik, Michael J</creator><creator>Medlin, J. Will</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8213-4314</orcidid><orcidid>https://orcid.org/0000-0001-9975-0650</orcidid><orcidid>https://orcid.org/0000-0003-2404-2443</orcidid><orcidid>https://orcid.org/0000000282134314</orcidid><orcidid>https://orcid.org/0000000324042443</orcidid><orcidid>https://orcid.org/0000000199750650</orcidid></search><sort><creationdate>20200318</creationdate><title>Control of Molecular Bonding Strength on Metal Catalysts with Organic Monolayers for CO2 Reduction</title><author>Zhang, Jing ; Deo, Shyam ; Janik, Michael J ; Medlin, J. Will</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a286t-2716e143721161f6cade3ddba761a962241a8ef6baaff822fa4bea0ff4b2ce873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Catalysts</topic><topic>Deposition</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Metals</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Deo, Shyam</creatorcontrib><creatorcontrib>Janik, Michael J</creatorcontrib><creatorcontrib>Medlin, J. Will</creatorcontrib><creatorcontrib>Univ. of Colorado, Boulder, CO (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Deo, Shyam</au><au>Janik, Michael J</au><au>Medlin, J. Will</au><aucorp>Univ. of Colorado, Boulder, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Molecular Bonding Strength on Metal Catalysts with Organic Monolayers for CO2 Reduction</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-03-18</date><risdate>2020</risdate><volume>142</volume><issue>11</issue><spage>5184</spage><epage>5193</epage><pages>5184-5193</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The development of separate levers for controlling the bonding strength of different reactive species on catalyst surfaces is challenging but essential for the design of highly active and selective catalysts. For example, during CO2 reduction, production of CO often requires balancing a trade-off between the adsorption strength of the reactant and product states: weak binding of CO is desirable from a selectivity perspective, but weak binding of CO2 leads to low activity. Here, we demonstrate a new method of controlling both CO2 adsorption and CO desorption over supported metal catalysts by employing a single self-assembly step where organic monolayer films were deposited on the catalyst support. Binding of phosphonic acid monolayers on supported Pt and Pd catalysts weakened CO binding via a through-support effect. The weakened CO adsorption was generally accompanied by decreased adsorption and reactivity of CO2. However, by the incorporation of basic amine functions at controlled positions in the modifying film, strong CO2 adsorption and hydrogenation reactivity could be restored. Thus, both through-surface and through-space interactions could be manipulated by design of the organic modifiers. After surface modification, the catalysts exhibited significantly improved selectivity (up to ∼99% at conversions near 50%) and activity toward CO production. Moreover, the rate of deactivation was notably reduced due to prevention of CO poisoning.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jacs.9b12980</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8213-4314</orcidid><orcidid>https://orcid.org/0000-0001-9975-0650</orcidid><orcidid>https://orcid.org/0000-0003-2404-2443</orcidid><orcidid>https://orcid.org/0000000282134314</orcidid><orcidid>https://orcid.org/0000000324042443</orcidid><orcidid>https://orcid.org/0000000199750650</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2020-03, Vol.142 (11), p.5184-5193 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1658614 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Adsorption Catalysts Deposition INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Metals Selectivity |
title | Control of Molecular Bonding Strength on Metal Catalysts with Organic Monolayers for CO2 Reduction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Molecular%20Bonding%20Strength%20on%20Metal%20Catalysts%20with%20Organic%20Monolayers%20for%20CO2%20Reduction&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhang,%20Jing&rft.aucorp=Univ.%20of%20Colorado,%20Boulder,%20CO%20(United%20States)&rft.date=2020-03-18&rft.volume=142&rft.issue=11&rft.spage=5184&rft.epage=5193&rft.pages=5184-5193&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b12980&rft_dat=%3Cacs_osti_%3Ee35170334%3C/acs_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a286t-2716e143721161f6cade3ddba761a962241a8ef6baaff822fa4bea0ff4b2ce873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |