Loading…
High-Temperature Nucleation of GaP on V‑Grooved Si
The use of nanopatterned {111}-faceted v-grooves has recently shown promise for growing high-quality III–V material on Si. Here, we study the effect of reactor conditions and surface pretreatments on the nucleation of GaP on v-grooved Si in a high-temperature regime, which offers the promise of a de...
Saved in:
Published in: | Crystal growth & design 2020-10, Vol.20 (10), p.6745-6751 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The use of nanopatterned {111}-faceted v-grooves has recently shown promise for growing high-quality III–V material on Si. Here, we study the effect of reactor conditions and surface pretreatments on the nucleation of GaP on v-grooved Si in a high-temperature regime, which offers the promise of a defect-free GaP/Si interface favorable for Si passivation and dislocation glide in the GaP. X-ray photoelectron spectroscopy was used to understand the Si surface chemistry prior to nucleation, and transmission electron microscopy was used to probe material quality of the nuclei. Temperature and V/III ratio were found to control the facet selectivity of nucleation. We demonstrate a condition of high temperature and high V–III ratio that leads to uniform nucleation at the bottom of the trenches, with initial material free of nucleation-related interfacial defects. This optimized condition was then shown to coalesce into a thin film after additional growth. |
---|---|
ISSN: | 1528-7483 1528-7505 |
DOI: | 10.1021/acs.cgd.0c00875 |