Loading…
Indirect Intersystem Crossing (S1 → T3/T2 → T1) Promoted by the Jahn–Teller Effect in Cycloparaphenylenes
Vibronic-coupling effects play a key role for excited-state charge- and energy-transfer processes in organic molecular systems. Here, we demonstrate how the Jahn–Teller effect in triplet excited states of highly symmetric cycloparaphenylenes triggers an indirect intersystem crossing deactivation pat...
Saved in:
Published in: | Journal of chemical theory and computation 2017-10, Vol.13 (10), p.4944-4949 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vibronic-coupling effects play a key role for excited-state charge- and energy-transfer processes in organic molecular systems. Here, we demonstrate how the Jahn–Teller effect in triplet excited states of highly symmetric cycloparaphenylenes triggers an indirect intersystem crossing deactivation pathway. Strong Jahn–Teller distortion in the doubly degenerate second excited triplet state (T2) brings the molecular system energetically close to the lowest triplet state (T1), thereby opening the possibility for an extremely rapid internal conversion. Quantum dynamics simulations reveal an initial T2 → T1 population decay within 50 fs. Experimental observation of size-dependent intersystem crossing rates of cycloparaphenylenes is explained based on the proposed S1 → T3/T2 → T1 mechanism. |
---|---|
ISSN: | 1549-9618 1549-9626 |
DOI: | 10.1021/acs.jctc.7b00166 |