Loading…

Progress in extending high poloidal beta scenarios on DIII-D towards a steady-state fusion reactor and impact of energetic particles

To prepare for steady-state operation of future fusion reactors (e.g. the International Thermonuclear Experimental Reactor and China Fusion Engineering Test Reactor (CFETR)), experiments on DIII-D have extended the high poloidal beta (βP) scenario to reactor-relevant edge safety factor q95 ~ 6.0, wh...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear fusion 2020-09, Vol.60 (12)
Main Authors: Huang, J., Garofalo, A. M., Qian, J. P., Gong, X. Z., Ding, S. Y., Varela, J., Chen, J. L., Guo, W. F., Li, K., Wu, M. Q., Pan, C. K., Ren, Q., Zhang, B., Lao, L. L., Holcomb, C. T., McClenaghan, J., Weisberg, D., Chan, V., Hyatt, A., Hu, W. H., Li, G. Q., Ferron, J., McKee, G., Pinsker, R. I., Rhodes, T., Staebler, G. M., Spong, D., Yan, Z.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To prepare for steady-state operation of future fusion reactors (e.g. the International Thermonuclear Experimental Reactor and China Fusion Engineering Test Reactor (CFETR)), experiments on DIII-D have extended the high poloidal beta (βP) scenario to reactor-relevant edge safety factor q95 ~ 6.0, while maintaining a large-radius internal transport barrier (ITB) using negative magnetic shear. Excellent energy confinement quality (H98y2 > 1.5) is sustained at high normalized beta (βN ~ 3.5). This high-performance ITB state with Greenwald density fraction near 100% and qmin ≥ 3 is achieved with toroidal plasma rotation Vtor ~ 0 at ρ ≥ 0.6. This is a key result for reactors expected to have low Vtor. At high βP (≥1.9), large Shafranov shift can stabilize turbulence leading to a high confinement state with a low pedestal and an ITB. At lower βP (
ISSN:0029-5515