Loading…

P3HT‐Based Polymer Solar Cells with 8.25% Efficiency Enabled by a Matched Molecular Acceptor and Smart Green‐Solvent Processing Technology

A novel molecular acceptor of TrBTIC (2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene) is designed by attaching the 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐benzothiadiazole (BTIC) electron‐deficient unit to an electron‐rich truxene core. TrBTIC...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2019-12, Vol.31 (52), p.e1906045-n/a
Main Authors: Xu, Xiaopeng, Zhang, Guangjun, Yu, Liyang, Li, Ruipeng, Peng, Qiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4405-ae8da6c9bcf0f6605ae701716e4dccc284a006609f27c74b6a989a7ba79b93fb3
cites cdi_FETCH-LOGICAL-c4405-ae8da6c9bcf0f6605ae701716e4dccc284a006609f27c74b6a989a7ba79b93fb3
container_end_page n/a
container_issue 52
container_start_page e1906045
container_title Advanced materials (Weinheim)
container_volume 31
creator Xu, Xiaopeng
Zhang, Guangjun
Yu, Liyang
Li, Ruipeng
Peng, Qiang
description A novel molecular acceptor of TrBTIC (2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene) is designed by attaching the 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐benzothiadiazole (BTIC) electron‐deficient unit to an electron‐rich truxene core. TrBTIC has excellent solubility in common solvents and features good energy level matching with poly(3‐hexylthiophene) (P3HT). Interestingly, P3HT can be readily dissolved in warm 1,2,4‐trimethylbenzene (TMB), a green solvent, but crystallizes slowly with long‐term aging in TMB at room temperature. A prephase separation can thus occur before active blend film deposition, and the separation degree can be easily controlled by varying the aging time. After 40 min of aging, the resulting active blend has the most appropriate phase separation with uniform nanowires, which forms favorable interpenetrating networks for exciton dissociation and charge transport. As a result, the device performance is improved from 6.62% to 8.25%. Excitingly, 8.25% is a new record for P3HT‐based solar cells. The study not only provides an efficient nonfullerene acceptor for matching P3HT donors but also develops a promising processing technology to realize high‐performance P3HT‐based polymer solar cells with an efficiency over 8%. A power conversion efficiency of 8.25% for poly(3‐hexylthiophene)‐based polymer solar cells is realized by pairing a novel star‐shaped small‐molecular acceptor 2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene with a smart solution‐processing technology in the green solvent 1,2,4‐trimethylbenzene.
doi_str_mv 10.1002/adma.201906045
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1670670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329678019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4405-ae8da6c9bcf0f6605ae701716e4dccc284a006609f27c74b6a989a7ba79b93fb3</originalsourceid><addsrcrecordid>eNqFkdFqFDEUhoModlu99VKCUvBm1iSTSSaX67q2QhcXul6HTOZMd8pMsk1mLHPnE4jP6JOYZWsFb4TAIeH7_5NzfoReUTKnhLD3pu7NnBGqiCC8eIJmtGA040QVT9GMqLzIlODlCTqN8ZYQogQRz9FJTiUraEln6Mcmv9z--v7zg4lQ443vph4CvvadCXgJXRfxfTvscDlnxTleNU1rW3B2witnqi4pqgkbvDaD3aXL2ndgx4N0YS3sBx-wcTW-7k0Y8EUAcKlT8v4GbsCb4C3E2LobvAW7c77zN9ML9KwxXYSXD_UMff202i4vs6svF5-Xi6vMck6KzEBZG2FVZRvSCEEKA5JQSQXw2lrLSm4ISe-qYdJKXgmjSmVkZaSqVN5U-Rl6c_T1cWh1tO2QvmC9c2AHTYUk6STo3RHaB383Qhx030ablmIc-DFqllNeSM4kS-jbf9BbPwaXRkgUU0KWKaJEzY-UDT7GAI3ehzYtZ9KU6EOc-hCnfowzCV4_2I5VD_Uj_ie_BKgjcN92MP3HTi8-rhd_zX8DbJ6stg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329678019</pqid></control><display><type>article</type><title>P3HT‐Based Polymer Solar Cells with 8.25% Efficiency Enabled by a Matched Molecular Acceptor and Smart Green‐Solvent Processing Technology</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Xu, Xiaopeng ; Zhang, Guangjun ; Yu, Liyang ; Li, Ruipeng ; Peng, Qiang</creator><creatorcontrib>Xu, Xiaopeng ; Zhang, Guangjun ; Yu, Liyang ; Li, Ruipeng ; Peng, Qiang ; Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><description>A novel molecular acceptor of TrBTIC (2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene) is designed by attaching the 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐benzothiadiazole (BTIC) electron‐deficient unit to an electron‐rich truxene core. TrBTIC has excellent solubility in common solvents and features good energy level matching with poly(3‐hexylthiophene) (P3HT). Interestingly, P3HT can be readily dissolved in warm 1,2,4‐trimethylbenzene (TMB), a green solvent, but crystallizes slowly with long‐term aging in TMB at room temperature. A prephase separation can thus occur before active blend film deposition, and the separation degree can be easily controlled by varying the aging time. After 40 min of aging, the resulting active blend has the most appropriate phase separation with uniform nanowires, which forms favorable interpenetrating networks for exciton dissociation and charge transport. As a result, the device performance is improved from 6.62% to 8.25%. Excitingly, 8.25% is a new record for P3HT‐based solar cells. The study not only provides an efficient nonfullerene acceptor for matching P3HT donors but also develops a promising processing technology to realize high‐performance P3HT‐based polymer solar cells with an efficiency over 8%. A power conversion efficiency of 8.25% for poly(3‐hexylthiophene)‐based polymer solar cells is realized by pairing a novel star‐shaped small‐molecular acceptor 2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene with a smart solution‐processing technology in the green solvent 1,2,4‐trimethylbenzene.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201906045</identifier><identifier>PMID: 31725181</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aging ; Charge transport ; Energy levels ; Excitons ; green solvents ; Interpenetrating networks ; Malononitrile ; Matching ; MATERIALS SCIENCE ; Nanowires ; nonfullerene acceptors ; nonfullerene polymer solar cells ; Phase separation ; Photovoltaic cells ; poly(3‐hexylthiophene) ; Polymers ; Room temperature ; Solar cells ; solvent aging ; Solvents ; Trimethylbenzene</subject><ispartof>Advanced materials (Weinheim), 2019-12, Vol.31 (52), p.e1906045-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4405-ae8da6c9bcf0f6605ae701716e4dccc284a006609f27c74b6a989a7ba79b93fb3</citedby><cites>FETCH-LOGICAL-c4405-ae8da6c9bcf0f6605ae701716e4dccc284a006609f27c74b6a989a7ba79b93fb3</cites><orcidid>0000-0002-0354-1035 ; 0000000203541035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31725181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1670670$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiaopeng</creatorcontrib><creatorcontrib>Zhang, Guangjun</creatorcontrib><creatorcontrib>Yu, Liyang</creatorcontrib><creatorcontrib>Li, Ruipeng</creatorcontrib><creatorcontrib>Peng, Qiang</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><title>P3HT‐Based Polymer Solar Cells with 8.25% Efficiency Enabled by a Matched Molecular Acceptor and Smart Green‐Solvent Processing Technology</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>A novel molecular acceptor of TrBTIC (2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene) is designed by attaching the 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐benzothiadiazole (BTIC) electron‐deficient unit to an electron‐rich truxene core. TrBTIC has excellent solubility in common solvents and features good energy level matching with poly(3‐hexylthiophene) (P3HT). Interestingly, P3HT can be readily dissolved in warm 1,2,4‐trimethylbenzene (TMB), a green solvent, but crystallizes slowly with long‐term aging in TMB at room temperature. A prephase separation can thus occur before active blend film deposition, and the separation degree can be easily controlled by varying the aging time. After 40 min of aging, the resulting active blend has the most appropriate phase separation with uniform nanowires, which forms favorable interpenetrating networks for exciton dissociation and charge transport. As a result, the device performance is improved from 6.62% to 8.25%. Excitingly, 8.25% is a new record for P3HT‐based solar cells. The study not only provides an efficient nonfullerene acceptor for matching P3HT donors but also develops a promising processing technology to realize high‐performance P3HT‐based polymer solar cells with an efficiency over 8%. A power conversion efficiency of 8.25% for poly(3‐hexylthiophene)‐based polymer solar cells is realized by pairing a novel star‐shaped small‐molecular acceptor 2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene with a smart solution‐processing technology in the green solvent 1,2,4‐trimethylbenzene.</description><subject>Aging</subject><subject>Charge transport</subject><subject>Energy levels</subject><subject>Excitons</subject><subject>green solvents</subject><subject>Interpenetrating networks</subject><subject>Malononitrile</subject><subject>Matching</subject><subject>MATERIALS SCIENCE</subject><subject>Nanowires</subject><subject>nonfullerene acceptors</subject><subject>nonfullerene polymer solar cells</subject><subject>Phase separation</subject><subject>Photovoltaic cells</subject><subject>poly(3‐hexylthiophene)</subject><subject>Polymers</subject><subject>Room temperature</subject><subject>Solar cells</subject><subject>solvent aging</subject><subject>Solvents</subject><subject>Trimethylbenzene</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkdFqFDEUhoModlu99VKCUvBm1iSTSSaX67q2QhcXul6HTOZMd8pMsk1mLHPnE4jP6JOYZWsFb4TAIeH7_5NzfoReUTKnhLD3pu7NnBGqiCC8eIJmtGA040QVT9GMqLzIlODlCTqN8ZYQogQRz9FJTiUraEln6Mcmv9z--v7zg4lQ443vph4CvvadCXgJXRfxfTvscDlnxTleNU1rW3B2witnqi4pqgkbvDaD3aXL2ndgx4N0YS3sBx-wcTW-7k0Y8EUAcKlT8v4GbsCb4C3E2LobvAW7c77zN9ML9KwxXYSXD_UMff202i4vs6svF5-Xi6vMck6KzEBZG2FVZRvSCEEKA5JQSQXw2lrLSm4ISe-qYdJKXgmjSmVkZaSqVN5U-Rl6c_T1cWh1tO2QvmC9c2AHTYUk6STo3RHaB383Qhx030ablmIc-DFqllNeSM4kS-jbf9BbPwaXRkgUU0KWKaJEzY-UDT7GAI3ehzYtZ9KU6EOc-hCnfowzCV4_2I5VD_Uj_ie_BKgjcN92MP3HTi8-rhd_zX8DbJ6stg</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Xu, Xiaopeng</creator><creator>Zhang, Guangjun</creator><creator>Yu, Liyang</creator><creator>Li, Ruipeng</creator><creator>Peng, Qiang</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0354-1035</orcidid><orcidid>https://orcid.org/0000000203541035</orcidid></search><sort><creationdate>20191201</creationdate><title>P3HT‐Based Polymer Solar Cells with 8.25% Efficiency Enabled by a Matched Molecular Acceptor and Smart Green‐Solvent Processing Technology</title><author>Xu, Xiaopeng ; Zhang, Guangjun ; Yu, Liyang ; Li, Ruipeng ; Peng, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4405-ae8da6c9bcf0f6605ae701716e4dccc284a006609f27c74b6a989a7ba79b93fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Charge transport</topic><topic>Energy levels</topic><topic>Excitons</topic><topic>green solvents</topic><topic>Interpenetrating networks</topic><topic>Malononitrile</topic><topic>Matching</topic><topic>MATERIALS SCIENCE</topic><topic>Nanowires</topic><topic>nonfullerene acceptors</topic><topic>nonfullerene polymer solar cells</topic><topic>Phase separation</topic><topic>Photovoltaic cells</topic><topic>poly(3‐hexylthiophene)</topic><topic>Polymers</topic><topic>Room temperature</topic><topic>Solar cells</topic><topic>solvent aging</topic><topic>Solvents</topic><topic>Trimethylbenzene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiaopeng</creatorcontrib><creatorcontrib>Zhang, Guangjun</creatorcontrib><creatorcontrib>Yu, Liyang</creatorcontrib><creatorcontrib>Li, Ruipeng</creatorcontrib><creatorcontrib>Peng, Qiang</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiaopeng</au><au>Zhang, Guangjun</au><au>Yu, Liyang</au><au>Li, Ruipeng</au><au>Peng, Qiang</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P3HT‐Based Polymer Solar Cells with 8.25% Efficiency Enabled by a Matched Molecular Acceptor and Smart Green‐Solvent Processing Technology</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>31</volume><issue>52</issue><spage>e1906045</spage><epage>n/a</epage><pages>e1906045-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>A novel molecular acceptor of TrBTIC (2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene) is designed by attaching the 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐benzothiadiazole (BTIC) electron‐deficient unit to an electron‐rich truxene core. TrBTIC has excellent solubility in common solvents and features good energy level matching with poly(3‐hexylthiophene) (P3HT). Interestingly, P3HT can be readily dissolved in warm 1,2,4‐trimethylbenzene (TMB), a green solvent, but crystallizes slowly with long‐term aging in TMB at room temperature. A prephase separation can thus occur before active blend film deposition, and the separation degree can be easily controlled by varying the aging time. After 40 min of aging, the resulting active blend has the most appropriate phase separation with uniform nanowires, which forms favorable interpenetrating networks for exciton dissociation and charge transport. As a result, the device performance is improved from 6.62% to 8.25%. Excitingly, 8.25% is a new record for P3HT‐based solar cells. The study not only provides an efficient nonfullerene acceptor for matching P3HT donors but also develops a promising processing technology to realize high‐performance P3HT‐based polymer solar cells with an efficiency over 8%. A power conversion efficiency of 8.25% for poly(3‐hexylthiophene)‐based polymer solar cells is realized by pairing a novel star‐shaped small‐molecular acceptor 2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene with a smart solution‐processing technology in the green solvent 1,2,4‐trimethylbenzene.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31725181</pmid><doi>10.1002/adma.201906045</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0354-1035</orcidid><orcidid>https://orcid.org/0000000203541035</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-12, Vol.31 (52), p.e1906045-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1670670
source Wiley-Blackwell Read & Publish Collection
subjects Aging
Charge transport
Energy levels
Excitons
green solvents
Interpenetrating networks
Malononitrile
Matching
MATERIALS SCIENCE
Nanowires
nonfullerene acceptors
nonfullerene polymer solar cells
Phase separation
Photovoltaic cells
poly(3‐hexylthiophene)
Polymers
Room temperature
Solar cells
solvent aging
Solvents
Trimethylbenzene
title P3HT‐Based Polymer Solar Cells with 8.25% Efficiency Enabled by a Matched Molecular Acceptor and Smart Green‐Solvent Processing Technology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P3HT%E2%80%90Based%20Polymer%20Solar%20Cells%20with%208.25%25%20Efficiency%20Enabled%20by%20a%20Matched%20Molecular%20Acceptor%20and%20Smart%20Green%E2%80%90Solvent%20Processing%20Technology&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Xu,%20Xiaopeng&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States).%20National%20Synchrotron%20Light%20Source%20II%20(NSLS-II)&rft.date=2019-12-01&rft.volume=31&rft.issue=52&rft.spage=e1906045&rft.epage=n/a&rft.pages=e1906045-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201906045&rft_dat=%3Cproquest_osti_%3E2329678019%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4405-ae8da6c9bcf0f6605ae701716e4dccc284a006609f27c74b6a989a7ba79b93fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2329678019&rft_id=info:pmid/31725181&rfr_iscdi=true