Loading…
P3HT‐Based Polymer Solar Cells with 8.25% Efficiency Enabled by a Matched Molecular Acceptor and Smart Green‐Solvent Processing Technology
A novel molecular acceptor of TrBTIC (2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene) is designed by attaching the 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐benzothiadiazole (BTIC) electron‐deficient unit to an electron‐rich truxene core. TrBTIC...
Saved in:
Published in: | Advanced materials (Weinheim) 2019-12, Vol.31 (52), p.e1906045-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4405-ae8da6c9bcf0f6605ae701716e4dccc284a006609f27c74b6a989a7ba79b93fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4405-ae8da6c9bcf0f6605ae701716e4dccc284a006609f27c74b6a989a7ba79b93fb3 |
container_end_page | n/a |
container_issue | 52 |
container_start_page | e1906045 |
container_title | Advanced materials (Weinheim) |
container_volume | 31 |
creator | Xu, Xiaopeng Zhang, Guangjun Yu, Liyang Li, Ruipeng Peng, Qiang |
description | A novel molecular acceptor of TrBTIC (2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene) is designed by attaching the 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐benzothiadiazole (BTIC) electron‐deficient unit to an electron‐rich truxene core. TrBTIC has excellent solubility in common solvents and features good energy level matching with poly(3‐hexylthiophene) (P3HT). Interestingly, P3HT can be readily dissolved in warm 1,2,4‐trimethylbenzene (TMB), a green solvent, but crystallizes slowly with long‐term aging in TMB at room temperature. A prephase separation can thus occur before active blend film deposition, and the separation degree can be easily controlled by varying the aging time. After 40 min of aging, the resulting active blend has the most appropriate phase separation with uniform nanowires, which forms favorable interpenetrating networks for exciton dissociation and charge transport. As a result, the device performance is improved from 6.62% to 8.25%. Excitingly, 8.25% is a new record for P3HT‐based solar cells. The study not only provides an efficient nonfullerene acceptor for matching P3HT donors but also develops a promising processing technology to realize high‐performance P3HT‐based polymer solar cells with an efficiency over 8%.
A power conversion efficiency of 8.25% for poly(3‐hexylthiophene)‐based polymer solar cells is realized by pairing a novel star‐shaped small‐molecular acceptor 2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene with a smart solution‐processing technology in the green solvent 1,2,4‐trimethylbenzene. |
doi_str_mv | 10.1002/adma.201906045 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1670670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329678019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4405-ae8da6c9bcf0f6605ae701716e4dccc284a006609f27c74b6a989a7ba79b93fb3</originalsourceid><addsrcrecordid>eNqFkdFqFDEUhoModlu99VKCUvBm1iSTSSaX67q2QhcXul6HTOZMd8pMsk1mLHPnE4jP6JOYZWsFb4TAIeH7_5NzfoReUTKnhLD3pu7NnBGqiCC8eIJmtGA040QVT9GMqLzIlODlCTqN8ZYQogQRz9FJTiUraEln6Mcmv9z--v7zg4lQ443vph4CvvadCXgJXRfxfTvscDlnxTleNU1rW3B2witnqi4pqgkbvDaD3aXL2ndgx4N0YS3sBx-wcTW-7k0Y8EUAcKlT8v4GbsCb4C3E2LobvAW7c77zN9ML9KwxXYSXD_UMff202i4vs6svF5-Xi6vMck6KzEBZG2FVZRvSCEEKA5JQSQXw2lrLSm4ISe-qYdJKXgmjSmVkZaSqVN5U-Rl6c_T1cWh1tO2QvmC9c2AHTYUk6STo3RHaB383Qhx030ablmIc-DFqllNeSM4kS-jbf9BbPwaXRkgUU0KWKaJEzY-UDT7GAI3ehzYtZ9KU6EOc-hCnfowzCV4_2I5VD_Uj_ie_BKgjcN92MP3HTi8-rhd_zX8DbJ6stg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329678019</pqid></control><display><type>article</type><title>P3HT‐Based Polymer Solar Cells with 8.25% Efficiency Enabled by a Matched Molecular Acceptor and Smart Green‐Solvent Processing Technology</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Xu, Xiaopeng ; Zhang, Guangjun ; Yu, Liyang ; Li, Ruipeng ; Peng, Qiang</creator><creatorcontrib>Xu, Xiaopeng ; Zhang, Guangjun ; Yu, Liyang ; Li, Ruipeng ; Peng, Qiang ; Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><description>A novel molecular acceptor of TrBTIC (2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene) is designed by attaching the 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐benzothiadiazole (BTIC) electron‐deficient unit to an electron‐rich truxene core. TrBTIC has excellent solubility in common solvents and features good energy level matching with poly(3‐hexylthiophene) (P3HT). Interestingly, P3HT can be readily dissolved in warm 1,2,4‐trimethylbenzene (TMB), a green solvent, but crystallizes slowly with long‐term aging in TMB at room temperature. A prephase separation can thus occur before active blend film deposition, and the separation degree can be easily controlled by varying the aging time. After 40 min of aging, the resulting active blend has the most appropriate phase separation with uniform nanowires, which forms favorable interpenetrating networks for exciton dissociation and charge transport. As a result, the device performance is improved from 6.62% to 8.25%. Excitingly, 8.25% is a new record for P3HT‐based solar cells. The study not only provides an efficient nonfullerene acceptor for matching P3HT donors but also develops a promising processing technology to realize high‐performance P3HT‐based polymer solar cells with an efficiency over 8%.
A power conversion efficiency of 8.25% for poly(3‐hexylthiophene)‐based polymer solar cells is realized by pairing a novel star‐shaped small‐molecular acceptor 2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene with a smart solution‐processing technology in the green solvent 1,2,4‐trimethylbenzene.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201906045</identifier><identifier>PMID: 31725181</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aging ; Charge transport ; Energy levels ; Excitons ; green solvents ; Interpenetrating networks ; Malononitrile ; Matching ; MATERIALS SCIENCE ; Nanowires ; nonfullerene acceptors ; nonfullerene polymer solar cells ; Phase separation ; Photovoltaic cells ; poly(3‐hexylthiophene) ; Polymers ; Room temperature ; Solar cells ; solvent aging ; Solvents ; Trimethylbenzene</subject><ispartof>Advanced materials (Weinheim), 2019-12, Vol.31 (52), p.e1906045-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4405-ae8da6c9bcf0f6605ae701716e4dccc284a006609f27c74b6a989a7ba79b93fb3</citedby><cites>FETCH-LOGICAL-c4405-ae8da6c9bcf0f6605ae701716e4dccc284a006609f27c74b6a989a7ba79b93fb3</cites><orcidid>0000-0002-0354-1035 ; 0000000203541035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31725181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1670670$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiaopeng</creatorcontrib><creatorcontrib>Zhang, Guangjun</creatorcontrib><creatorcontrib>Yu, Liyang</creatorcontrib><creatorcontrib>Li, Ruipeng</creatorcontrib><creatorcontrib>Peng, Qiang</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><title>P3HT‐Based Polymer Solar Cells with 8.25% Efficiency Enabled by a Matched Molecular Acceptor and Smart Green‐Solvent Processing Technology</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>A novel molecular acceptor of TrBTIC (2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene) is designed by attaching the 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐benzothiadiazole (BTIC) electron‐deficient unit to an electron‐rich truxene core. TrBTIC has excellent solubility in common solvents and features good energy level matching with poly(3‐hexylthiophene) (P3HT). Interestingly, P3HT can be readily dissolved in warm 1,2,4‐trimethylbenzene (TMB), a green solvent, but crystallizes slowly with long‐term aging in TMB at room temperature. A prephase separation can thus occur before active blend film deposition, and the separation degree can be easily controlled by varying the aging time. After 40 min of aging, the resulting active blend has the most appropriate phase separation with uniform nanowires, which forms favorable interpenetrating networks for exciton dissociation and charge transport. As a result, the device performance is improved from 6.62% to 8.25%. Excitingly, 8.25% is a new record for P3HT‐based solar cells. The study not only provides an efficient nonfullerene acceptor for matching P3HT donors but also develops a promising processing technology to realize high‐performance P3HT‐based polymer solar cells with an efficiency over 8%.
A power conversion efficiency of 8.25% for poly(3‐hexylthiophene)‐based polymer solar cells is realized by pairing a novel star‐shaped small‐molecular acceptor 2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene with a smart solution‐processing technology in the green solvent 1,2,4‐trimethylbenzene.</description><subject>Aging</subject><subject>Charge transport</subject><subject>Energy levels</subject><subject>Excitons</subject><subject>green solvents</subject><subject>Interpenetrating networks</subject><subject>Malononitrile</subject><subject>Matching</subject><subject>MATERIALS SCIENCE</subject><subject>Nanowires</subject><subject>nonfullerene acceptors</subject><subject>nonfullerene polymer solar cells</subject><subject>Phase separation</subject><subject>Photovoltaic cells</subject><subject>poly(3‐hexylthiophene)</subject><subject>Polymers</subject><subject>Room temperature</subject><subject>Solar cells</subject><subject>solvent aging</subject><subject>Solvents</subject><subject>Trimethylbenzene</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkdFqFDEUhoModlu99VKCUvBm1iSTSSaX67q2QhcXul6HTOZMd8pMsk1mLHPnE4jP6JOYZWsFb4TAIeH7_5NzfoReUTKnhLD3pu7NnBGqiCC8eIJmtGA040QVT9GMqLzIlODlCTqN8ZYQogQRz9FJTiUraEln6Mcmv9z--v7zg4lQ443vph4CvvadCXgJXRfxfTvscDlnxTleNU1rW3B2witnqi4pqgkbvDaD3aXL2ndgx4N0YS3sBx-wcTW-7k0Y8EUAcKlT8v4GbsCb4C3E2LobvAW7c77zN9ML9KwxXYSXD_UMff202i4vs6svF5-Xi6vMck6KzEBZG2FVZRvSCEEKA5JQSQXw2lrLSm4ISe-qYdJKXgmjSmVkZaSqVN5U-Rl6c_T1cWh1tO2QvmC9c2AHTYUk6STo3RHaB383Qhx030ablmIc-DFqllNeSM4kS-jbf9BbPwaXRkgUU0KWKaJEzY-UDT7GAI3ehzYtZ9KU6EOc-hCnfowzCV4_2I5VD_Uj_ie_BKgjcN92MP3HTi8-rhd_zX8DbJ6stg</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Xu, Xiaopeng</creator><creator>Zhang, Guangjun</creator><creator>Yu, Liyang</creator><creator>Li, Ruipeng</creator><creator>Peng, Qiang</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0354-1035</orcidid><orcidid>https://orcid.org/0000000203541035</orcidid></search><sort><creationdate>20191201</creationdate><title>P3HT‐Based Polymer Solar Cells with 8.25% Efficiency Enabled by a Matched Molecular Acceptor and Smart Green‐Solvent Processing Technology</title><author>Xu, Xiaopeng ; Zhang, Guangjun ; Yu, Liyang ; Li, Ruipeng ; Peng, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4405-ae8da6c9bcf0f6605ae701716e4dccc284a006609f27c74b6a989a7ba79b93fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Charge transport</topic><topic>Energy levels</topic><topic>Excitons</topic><topic>green solvents</topic><topic>Interpenetrating networks</topic><topic>Malononitrile</topic><topic>Matching</topic><topic>MATERIALS SCIENCE</topic><topic>Nanowires</topic><topic>nonfullerene acceptors</topic><topic>nonfullerene polymer solar cells</topic><topic>Phase separation</topic><topic>Photovoltaic cells</topic><topic>poly(3‐hexylthiophene)</topic><topic>Polymers</topic><topic>Room temperature</topic><topic>Solar cells</topic><topic>solvent aging</topic><topic>Solvents</topic><topic>Trimethylbenzene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiaopeng</creatorcontrib><creatorcontrib>Zhang, Guangjun</creatorcontrib><creatorcontrib>Yu, Liyang</creatorcontrib><creatorcontrib>Li, Ruipeng</creatorcontrib><creatorcontrib>Peng, Qiang</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiaopeng</au><au>Zhang, Guangjun</au><au>Yu, Liyang</au><au>Li, Ruipeng</au><au>Peng, Qiang</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P3HT‐Based Polymer Solar Cells with 8.25% Efficiency Enabled by a Matched Molecular Acceptor and Smart Green‐Solvent Processing Technology</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>31</volume><issue>52</issue><spage>e1906045</spage><epage>n/a</epage><pages>e1906045-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>A novel molecular acceptor of TrBTIC (2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene) is designed by attaching the 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐benzothiadiazole (BTIC) electron‐deficient unit to an electron‐rich truxene core. TrBTIC has excellent solubility in common solvents and features good energy level matching with poly(3‐hexylthiophene) (P3HT). Interestingly, P3HT can be readily dissolved in warm 1,2,4‐trimethylbenzene (TMB), a green solvent, but crystallizes slowly with long‐term aging in TMB at room temperature. A prephase separation can thus occur before active blend film deposition, and the separation degree can be easily controlled by varying the aging time. After 40 min of aging, the resulting active blend has the most appropriate phase separation with uniform nanowires, which forms favorable interpenetrating networks for exciton dissociation and charge transport. As a result, the device performance is improved from 6.62% to 8.25%. Excitingly, 8.25% is a new record for P3HT‐based solar cells. The study not only provides an efficient nonfullerene acceptor for matching P3HT donors but also develops a promising processing technology to realize high‐performance P3HT‐based polymer solar cells with an efficiency over 8%.
A power conversion efficiency of 8.25% for poly(3‐hexylthiophene)‐based polymer solar cells is realized by pairing a novel star‐shaped small‐molecular acceptor 2,7,12‐tris((2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile‐7‐benzothiadiazole‐2‐)truxene with a smart solution‐processing technology in the green solvent 1,2,4‐trimethylbenzene.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31725181</pmid><doi>10.1002/adma.201906045</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0354-1035</orcidid><orcidid>https://orcid.org/0000000203541035</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2019-12, Vol.31 (52), p.e1906045-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1670670 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aging Charge transport Energy levels Excitons green solvents Interpenetrating networks Malononitrile Matching MATERIALS SCIENCE Nanowires nonfullerene acceptors nonfullerene polymer solar cells Phase separation Photovoltaic cells poly(3‐hexylthiophene) Polymers Room temperature Solar cells solvent aging Solvents Trimethylbenzene |
title | P3HT‐Based Polymer Solar Cells with 8.25% Efficiency Enabled by a Matched Molecular Acceptor and Smart Green‐Solvent Processing Technology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P3HT%E2%80%90Based%20Polymer%20Solar%20Cells%20with%208.25%25%20Efficiency%20Enabled%20by%20a%20Matched%20Molecular%20Acceptor%20and%20Smart%20Green%E2%80%90Solvent%20Processing%20Technology&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Xu,%20Xiaopeng&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States).%20National%20Synchrotron%20Light%20Source%20II%20(NSLS-II)&rft.date=2019-12-01&rft.volume=31&rft.issue=52&rft.spage=e1906045&rft.epage=n/a&rft.pages=e1906045-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201906045&rft_dat=%3Cproquest_osti_%3E2329678019%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4405-ae8da6c9bcf0f6605ae701716e4dccc284a006609f27c74b6a989a7ba79b93fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2329678019&rft_id=info:pmid/31725181&rfr_iscdi=true |