Loading…
Deep neural network improves the estimation of polygenic risk scores for breast cancer
Polygenic risk scores (PRS) estimate the genetic risk of an individual for a complex disease based on many genetic variants across the whole genome. In this study, we compared a series of computational models for estimation of breast cancer PRS. A deep neural network (DNN) was found to outperform al...
Saved in:
Published in: | Journal of human genetics 2021-04, Vol.66 (4), p.359-369 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polygenic risk scores (PRS) estimate the genetic risk of an individual for a complex disease based on many genetic variants across the whole genome. In this study, we compared a series of computational models for estimation of breast cancer PRS. A deep neural network (DNN) was found to outperform alternative machine learning techniques and established statistical algorithms, including BLUP, BayesA, and LDpred. In the test cohort with 50% prevalence, the Area Under the receiver operating characteristic Curve (AUC) were 67.4% for DNN, 64.2% for BLUP, 64.5% for BayesA, and 62.4% for LDpred. BLUP, BayesA, and LPpred all generated PRS that followed a normal distribution in the case population. However, the PRS generated by DNN in the case population followed a bimodal distribution composed of two normal distributions with distinctly different means. This suggests that DNN was able to separate the case population into a high-genetic-risk case subpopulation with an average PRS significantly higher than the control population and a normal-genetic-risk case subpopulation with an average PRS similar to the control population. This allowed DNN to achieve 18.8% recall at 90% precision in the test cohort with 50% prevalence, which can be extrapolated to 65.4% recall at 20% precision in a general population with 12% prevalence. Interpretation of the DNN model identified salient variants that were assigned insignificant p values by association studies, but were important for DNN prediction. These variants may be associated with the phenotype through nonlinear relationships. |
---|---|
ISSN: | 1434-5161 1435-232X |
DOI: | 10.1038/s10038-020-00832-7 |