Loading…

Viscoelastic analytical model and design of polymer-based bimodal piezoelectric motor

•Polyphenylene sulfide (PPS) is used as material of bimodal piezoelectric motor.•The viscoelastic electromechanical coupling model of the motor is proposed.•Utilizing Taguchi method to design the bimodal piezoelectric motor. Polymers have attracted enormous attention due to their characteristics of...

Full description

Saved in:
Bibliographic Details
Published in:Mechanical systems and signal processing 2020-11, Vol.145 (C), p.106960, Article 106960
Main Authors: Cao, Teng, Li, Xiaoniu, Wang, Boquan, Mi, Yuan, Zhao, Gai, Twiefel, Jens, Wu, Dawei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-ff95c0a583750a900bcb2adb6674dc1ee0260ac9f01d0531b4d133b69d6a42ed3
cites cdi_FETCH-LOGICAL-c403t-ff95c0a583750a900bcb2adb6674dc1ee0260ac9f01d0531b4d133b69d6a42ed3
container_end_page
container_issue C
container_start_page 106960
container_title Mechanical systems and signal processing
container_volume 145
creator Cao, Teng
Li, Xiaoniu
Wang, Boquan
Mi, Yuan
Zhao, Gai
Twiefel, Jens
Wu, Dawei
description •Polyphenylene sulfide (PPS) is used as material of bimodal piezoelectric motor.•The viscoelastic electromechanical coupling model of the motor is proposed.•Utilizing Taguchi method to design the bimodal piezoelectric motor. Polymers have attracted enormous attention due to their characteristics of low density and high energy density for potential applications in low weight piezoelectric motors. However, the viscosity of polymers presents a challenge to match two resonance frequencies of the longitudinal and bending modes of the bimodal piezoelectric motor. In this paper, polyphenylene sulfide (PPS)-based bimodal piezoelectric motor is researched. Concerning the viscoelasticity of PPS, the electromechanical coupling analytical model is established to describe the dynamics of the PPS-based motor by using the Kelvin-Voigt viscoelastic model. Based on the proposed model, the Taguchi method is adopted to match the resonance frequencies of the longitudinal and bending vibration. A PPS-based prototype motor is fabricated with optimized parameters. The frequency response characteristics, displacement response and electromechanical coupling coefficients are computed and compared to the finite element method and experimental results to validate the effectiveness of the model. The comparisons show that the proposed model is valid. The performance test demonstrates that the PPS-based motor can yield the maximal torque of 2 mNm with the stator weight of 5.4 g. Compared with the same volume of phosphor bronze material, 75% of weight reduction can be achieved.
doi_str_mv 10.1016/j.ymssp.2020.106960
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1693550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327020303460</els_id><sourcerecordid>2444099887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-ff95c0a583750a900bcb2adb6674dc1ee0260ac9f01d0531b4d133b69d6a42ed3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Ai9Fz10nTZttDh5k8R8seHG9hjSZakrb1KQrrJ_e1Hr2NMPwe483j5BLCisKlN80q0MXwrDKIJsuXHA4IgsKgqc0o_yYLKAsy5RlazglZyE0ACBy4Auye7NBO2xVGK1OVK_aQ1xUm3TOYBsPJjEY7HufuDoZXHvo0KeVCmiSykYmkoPF7-iAevTRonOj8-fkpFZtwIu_uSS7h_vXzVO6fXl83txtU50DG9O6FoUGVZRsXYASAJWuMmUqzte50RQRMg5KixqogYLRKjeUsYoLw1WeoWFLcjX7uhhfBm1H1B_a9X0MIykXrCggQtczNHj3uccwysbtffw0yCzPcxCiLNeRYjOlvQvBYy0HbzvlD5KCnEqWjfwtWU4ly7nkqLqdVRi__LLopxDYazTWTxmMs__qfwAKIIb4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444099887</pqid></control><display><type>article</type><title>Viscoelastic analytical model and design of polymer-based bimodal piezoelectric motor</title><source>ScienceDirect Freedom Collection</source><creator>Cao, Teng ; Li, Xiaoniu ; Wang, Boquan ; Mi, Yuan ; Zhao, Gai ; Twiefel, Jens ; Wu, Dawei</creator><creatorcontrib>Cao, Teng ; Li, Xiaoniu ; Wang, Boquan ; Mi, Yuan ; Zhao, Gai ; Twiefel, Jens ; Wu, Dawei</creatorcontrib><description>•Polyphenylene sulfide (PPS) is used as material of bimodal piezoelectric motor.•The viscoelastic electromechanical coupling model of the motor is proposed.•Utilizing Taguchi method to design the bimodal piezoelectric motor. Polymers have attracted enormous attention due to their characteristics of low density and high energy density for potential applications in low weight piezoelectric motors. However, the viscosity of polymers presents a challenge to match two resonance frequencies of the longitudinal and bending modes of the bimodal piezoelectric motor. In this paper, polyphenylene sulfide (PPS)-based bimodal piezoelectric motor is researched. Concerning the viscoelasticity of PPS, the electromechanical coupling analytical model is established to describe the dynamics of the PPS-based motor by using the Kelvin-Voigt viscoelastic model. Based on the proposed model, the Taguchi method is adopted to match the resonance frequencies of the longitudinal and bending vibration. A PPS-based prototype motor is fabricated with optimized parameters. The frequency response characteristics, displacement response and electromechanical coupling coefficients are computed and compared to the finite element method and experimental results to validate the effectiveness of the model. The comparisons show that the proposed model is valid. The performance test demonstrates that the PPS-based motor can yield the maximal torque of 2 mNm with the stator weight of 5.4 g. Compared with the same volume of phosphor bronze material, 75% of weight reduction can be achieved.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2020.106960</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Analytical model ; Bending vibration ; Coupling coefficients ; Finite element method ; Flux density ; Frequency response ; Kelvin-Voigt ; Mathematical models ; Performance tests ; Phosphor bronzes ; Piezoelectric motor ; Piezoelectric motors ; Polymers ; Polyphenylene sulfides ; Resonance ; Taguchi method ; Taguchi methods ; Viscoelasticity ; Weight reduction</subject><ispartof>Mechanical systems and signal processing, 2020-11, Vol.145 (C), p.106960, Article 106960</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov/Dec 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-ff95c0a583750a900bcb2adb6674dc1ee0260ac9f01d0531b4d133b69d6a42ed3</citedby><cites>FETCH-LOGICAL-c403t-ff95c0a583750a900bcb2adb6674dc1ee0260ac9f01d0531b4d133b69d6a42ed3</cites><orcidid>0000-0002-8589-8280 ; 0000000285898280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1693550$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Teng</creatorcontrib><creatorcontrib>Li, Xiaoniu</creatorcontrib><creatorcontrib>Wang, Boquan</creatorcontrib><creatorcontrib>Mi, Yuan</creatorcontrib><creatorcontrib>Zhao, Gai</creatorcontrib><creatorcontrib>Twiefel, Jens</creatorcontrib><creatorcontrib>Wu, Dawei</creatorcontrib><title>Viscoelastic analytical model and design of polymer-based bimodal piezoelectric motor</title><title>Mechanical systems and signal processing</title><description>•Polyphenylene sulfide (PPS) is used as material of bimodal piezoelectric motor.•The viscoelastic electromechanical coupling model of the motor is proposed.•Utilizing Taguchi method to design the bimodal piezoelectric motor. Polymers have attracted enormous attention due to their characteristics of low density and high energy density for potential applications in low weight piezoelectric motors. However, the viscosity of polymers presents a challenge to match two resonance frequencies of the longitudinal and bending modes of the bimodal piezoelectric motor. In this paper, polyphenylene sulfide (PPS)-based bimodal piezoelectric motor is researched. Concerning the viscoelasticity of PPS, the electromechanical coupling analytical model is established to describe the dynamics of the PPS-based motor by using the Kelvin-Voigt viscoelastic model. Based on the proposed model, the Taguchi method is adopted to match the resonance frequencies of the longitudinal and bending vibration. A PPS-based prototype motor is fabricated with optimized parameters. The frequency response characteristics, displacement response and electromechanical coupling coefficients are computed and compared to the finite element method and experimental results to validate the effectiveness of the model. The comparisons show that the proposed model is valid. The performance test demonstrates that the PPS-based motor can yield the maximal torque of 2 mNm with the stator weight of 5.4 g. Compared with the same volume of phosphor bronze material, 75% of weight reduction can be achieved.</description><subject>Analytical model</subject><subject>Bending vibration</subject><subject>Coupling coefficients</subject><subject>Finite element method</subject><subject>Flux density</subject><subject>Frequency response</subject><subject>Kelvin-Voigt</subject><subject>Mathematical models</subject><subject>Performance tests</subject><subject>Phosphor bronzes</subject><subject>Piezoelectric motor</subject><subject>Piezoelectric motors</subject><subject>Polymers</subject><subject>Polyphenylene sulfides</subject><subject>Resonance</subject><subject>Taguchi method</subject><subject>Taguchi methods</subject><subject>Viscoelasticity</subject><subject>Weight reduction</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Ai9Fz10nTZttDh5k8R8seHG9hjSZakrb1KQrrJ_e1Hr2NMPwe483j5BLCisKlN80q0MXwrDKIJsuXHA4IgsKgqc0o_yYLKAsy5RlazglZyE0ACBy4Auye7NBO2xVGK1OVK_aQ1xUm3TOYBsPJjEY7HufuDoZXHvo0KeVCmiSykYmkoPF7-iAevTRonOj8-fkpFZtwIu_uSS7h_vXzVO6fXl83txtU50DG9O6FoUGVZRsXYASAJWuMmUqzte50RQRMg5KixqogYLRKjeUsYoLw1WeoWFLcjX7uhhfBm1H1B_a9X0MIykXrCggQtczNHj3uccwysbtffw0yCzPcxCiLNeRYjOlvQvBYy0HbzvlD5KCnEqWjfwtWU4ly7nkqLqdVRi__LLopxDYazTWTxmMs__qfwAKIIb4</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Cao, Teng</creator><creator>Li, Xiaoniu</creator><creator>Wang, Boquan</creator><creator>Mi, Yuan</creator><creator>Zhao, Gai</creator><creator>Twiefel, Jens</creator><creator>Wu, Dawei</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8589-8280</orcidid><orcidid>https://orcid.org/0000000285898280</orcidid></search><sort><creationdate>202011</creationdate><title>Viscoelastic analytical model and design of polymer-based bimodal piezoelectric motor</title><author>Cao, Teng ; Li, Xiaoniu ; Wang, Boquan ; Mi, Yuan ; Zhao, Gai ; Twiefel, Jens ; Wu, Dawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-ff95c0a583750a900bcb2adb6674dc1ee0260ac9f01d0531b4d133b69d6a42ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical model</topic><topic>Bending vibration</topic><topic>Coupling coefficients</topic><topic>Finite element method</topic><topic>Flux density</topic><topic>Frequency response</topic><topic>Kelvin-Voigt</topic><topic>Mathematical models</topic><topic>Performance tests</topic><topic>Phosphor bronzes</topic><topic>Piezoelectric motor</topic><topic>Piezoelectric motors</topic><topic>Polymers</topic><topic>Polyphenylene sulfides</topic><topic>Resonance</topic><topic>Taguchi method</topic><topic>Taguchi methods</topic><topic>Viscoelasticity</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Teng</creatorcontrib><creatorcontrib>Li, Xiaoniu</creatorcontrib><creatorcontrib>Wang, Boquan</creatorcontrib><creatorcontrib>Mi, Yuan</creatorcontrib><creatorcontrib>Zhao, Gai</creatorcontrib><creatorcontrib>Twiefel, Jens</creatorcontrib><creatorcontrib>Wu, Dawei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Teng</au><au>Li, Xiaoniu</au><au>Wang, Boquan</au><au>Mi, Yuan</au><au>Zhao, Gai</au><au>Twiefel, Jens</au><au>Wu, Dawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelastic analytical model and design of polymer-based bimodal piezoelectric motor</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2020-11</date><risdate>2020</risdate><volume>145</volume><issue>C</issue><spage>106960</spage><pages>106960-</pages><artnum>106960</artnum><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•Polyphenylene sulfide (PPS) is used as material of bimodal piezoelectric motor.•The viscoelastic electromechanical coupling model of the motor is proposed.•Utilizing Taguchi method to design the bimodal piezoelectric motor. Polymers have attracted enormous attention due to their characteristics of low density and high energy density for potential applications in low weight piezoelectric motors. However, the viscosity of polymers presents a challenge to match two resonance frequencies of the longitudinal and bending modes of the bimodal piezoelectric motor. In this paper, polyphenylene sulfide (PPS)-based bimodal piezoelectric motor is researched. Concerning the viscoelasticity of PPS, the electromechanical coupling analytical model is established to describe the dynamics of the PPS-based motor by using the Kelvin-Voigt viscoelastic model. Based on the proposed model, the Taguchi method is adopted to match the resonance frequencies of the longitudinal and bending vibration. A PPS-based prototype motor is fabricated with optimized parameters. The frequency response characteristics, displacement response and electromechanical coupling coefficients are computed and compared to the finite element method and experimental results to validate the effectiveness of the model. The comparisons show that the proposed model is valid. The performance test demonstrates that the PPS-based motor can yield the maximal torque of 2 mNm with the stator weight of 5.4 g. Compared with the same volume of phosphor bronze material, 75% of weight reduction can be achieved.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2020.106960</doi><orcidid>https://orcid.org/0000-0002-8589-8280</orcidid><orcidid>https://orcid.org/0000000285898280</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2020-11, Vol.145 (C), p.106960, Article 106960
issn 0888-3270
1096-1216
language eng
recordid cdi_osti_scitechconnect_1693550
source ScienceDirect Freedom Collection
subjects Analytical model
Bending vibration
Coupling coefficients
Finite element method
Flux density
Frequency response
Kelvin-Voigt
Mathematical models
Performance tests
Phosphor bronzes
Piezoelectric motor
Piezoelectric motors
Polymers
Polyphenylene sulfides
Resonance
Taguchi method
Taguchi methods
Viscoelasticity
Weight reduction
title Viscoelastic analytical model and design of polymer-based bimodal piezoelectric motor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelastic%20analytical%20model%20and%20design%20of%20polymer-based%20bimodal%20piezoelectric%20motor&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Cao,%20Teng&rft.date=2020-11&rft.volume=145&rft.issue=C&rft.spage=106960&rft.pages=106960-&rft.artnum=106960&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2020.106960&rft_dat=%3Cproquest_osti_%3E2444099887%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-ff95c0a583750a900bcb2adb6674dc1ee0260ac9f01d0531b4d133b69d6a42ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2444099887&rft_id=info:pmid/&rfr_iscdi=true