Loading…
Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading
[Display omitted] •Nano-size IrOx/Nafion® catalyst is synthesized with a cost-effective process.•The IrOx/Nafion® catalyst shows excellent stability of 4,500 h in MEA test.•The iridium loading is reduced to 1/30th the commercial MEA loading.•Key factors are identified for achieving high OER activity...
Saved in:
Published in: | Applied catalysis. B, Environmental Environmental, 2018-12, Vol.239 (C), p.133-146 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-218260fa05f0137891b938ad1974a29798dce913c6940c529eb9c3609af79af53 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-218260fa05f0137891b938ad1974a29798dce913c6940c529eb9c3609af79af53 |
container_end_page | 146 |
container_issue | C |
container_start_page | 133 |
container_title | Applied catalysis. B, Environmental |
container_volume | 239 |
creator | Yu, Haoran Danilovic, Nemanja Wang, Yang Willis, William Poozhikunnath, Abhinav Bonville, Leonard Capuano, Chris Ayers, Katherine Maric, Radenka |
description | [Display omitted]
•Nano-size IrOx/Nafion® catalyst is synthesized with a cost-effective process.•The IrOx/Nafion® catalyst shows excellent stability of 4,500 h in MEA test.•The iridium loading is reduced to 1/30th the commercial MEA loading.•Key factors are identified for achieving high OER activity and stability.
The balance of catalyst loading, activity and stability remains a challenge for the anode of proton exchange membrane (PEM) water electrolyzers. Here we report a nano-size IrOx/Nafion® composite catalyst that exhibits both outstanding activity for oxygen evolution reaction (OER) and stability in a PEM water electrolyzer. The IrOx/Nafion® catalyst layer is fabricated using a flame-based cost-effect process, reactive spray deposition technology. The IrOx/Nafion® catalyst shows >10 times improvement in OER mass activity compared to IrOx nanoparticles synthesized using the wet chemistry method. The IrOx/Nafion® catalyst also achieved ∼4,500 h of stable operation in MEA electrolyzer at 1.8 A cm−2 and 80 °C with ultra-low iridium loading of 0.08 mg cm−2. Analysis of the IrOx structure and the electrochemical performance revealed three key factors for balancing high stability and activity: (1) high ratio of Ir (IV) to Ir (III) species and high content of hydroxide on the surface; (2) high anodic charge and surface area due to nano-size IrOx particles that are well-dispersed in the Nafion® ionomer electrolyte; (3) homogeneous anode catalyst layer morphology. |
doi_str_mv | 10.1016/j.apcatb.2018.07.064 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1693879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337318306829</els_id><sourcerecordid>2122773844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-218260fa05f0137891b938ad1974a29798dce913c6940c529eb9c3609af79af53</originalsourceid><addsrcrecordid>eNp9kE9rGzEQxUVpIa7bb5CDaM670T-vpEsgGDcJpHUP7VnIWq09ZrNyJDmu_emjZXvuYRgG3nu8-SF0TUlNCW1u97U9OJs3NSNU1UTWpBEf0IwqySuuFP-IZkSzpuJc8iv0OaU9IYRxpmYo_LRDqBJcPH6K67-4xNj-nDIOHd7Bdoety_AG-Yzt0OKU7Qb68YIB_1r9wCebfcS-9y7H0J8v5ThB3uFjn6Ot-nDCEKGF4wvug21h2H5BnzrbJ__1356jP99Xv5eP1fP64Wl5_1w5IUSuGFWsIZ0li45QLpWmG82VbamWwjIttWqd15S7RgviFkz7jXa8Idp2ssyCz9G3KTekDCY5yN7tXBiG0tTQpoRJXUQ3k-gQw-vRp2z24RiH0sswypiUXAlRVGJSuRhSir4zhwgvNp4NJWbkb_Zm4m9G_oZIU_gX291k8-XNN_BxbOEH51uIY4k2wP8D3gH6Fo_q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2122773844</pqid></control><display><type>article</type><title>Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Yu, Haoran ; Danilovic, Nemanja ; Wang, Yang ; Willis, William ; Poozhikunnath, Abhinav ; Bonville, Leonard ; Capuano, Chris ; Ayers, Katherine ; Maric, Radenka</creator><creatorcontrib>Yu, Haoran ; Danilovic, Nemanja ; Wang, Yang ; Willis, William ; Poozhikunnath, Abhinav ; Bonville, Leonard ; Capuano, Chris ; Ayers, Katherine ; Maric, Radenka</creatorcontrib><description>[Display omitted]
•Nano-size IrOx/Nafion® catalyst is synthesized with a cost-effective process.•The IrOx/Nafion® catalyst shows excellent stability of 4,500 h in MEA test.•The iridium loading is reduced to 1/30th the commercial MEA loading.•Key factors are identified for achieving high OER activity and stability.
The balance of catalyst loading, activity and stability remains a challenge for the anode of proton exchange membrane (PEM) water electrolyzers. Here we report a nano-size IrOx/Nafion® composite catalyst that exhibits both outstanding activity for oxygen evolution reaction (OER) and stability in a PEM water electrolyzer. The IrOx/Nafion® catalyst layer is fabricated using a flame-based cost-effect process, reactive spray deposition technology. The IrOx/Nafion® catalyst shows >10 times improvement in OER mass activity compared to IrOx nanoparticles synthesized using the wet chemistry method. The IrOx/Nafion® catalyst also achieved ∼4,500 h of stable operation in MEA electrolyzer at 1.8 A cm−2 and 80 °C with ultra-low iridium loading of 0.08 mg cm−2. Analysis of the IrOx structure and the electrochemical performance revealed three key factors for balancing high stability and activity: (1) high ratio of Ir (IV) to Ir (III) species and high content of hydroxide on the surface; (2) high anodic charge and surface area due to nano-size IrOx particles that are well-dispersed in the Nafion® ionomer electrolyte; (3) homogeneous anode catalyst layer morphology.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2018.07.064</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anodes ; Catalysis ; Catalysts ; Chemical synthesis ; Electrochemical analysis ; Electrochemistry ; Electrolytes ; Iridium ; Iridium oxide ; Load ; Morphology ; Nanoparticles ; Organic chemistry ; Oxygen evolution reaction ; Oxygen evolution reactions ; Proton exchange membrane water electrolysis ; Protons ; Reactive spray deposition technology ; Sedimentation & deposition ; Spray deposition ; Stability ; Surface charge</subject><ispartof>Applied catalysis. B, Environmental, 2018-12, Vol.239 (C), p.133-146</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 30, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-218260fa05f0137891b938ad1974a29798dce913c6940c529eb9c3609af79af53</citedby><cites>FETCH-LOGICAL-c444t-218260fa05f0137891b938ad1974a29798dce913c6940c529eb9c3609af79af53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1693879$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Haoran</creatorcontrib><creatorcontrib>Danilovic, Nemanja</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Willis, William</creatorcontrib><creatorcontrib>Poozhikunnath, Abhinav</creatorcontrib><creatorcontrib>Bonville, Leonard</creatorcontrib><creatorcontrib>Capuano, Chris</creatorcontrib><creatorcontrib>Ayers, Katherine</creatorcontrib><creatorcontrib>Maric, Radenka</creatorcontrib><title>Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted]
•Nano-size IrOx/Nafion® catalyst is synthesized with a cost-effective process.•The IrOx/Nafion® catalyst shows excellent stability of 4,500 h in MEA test.•The iridium loading is reduced to 1/30th the commercial MEA loading.•Key factors are identified for achieving high OER activity and stability.
The balance of catalyst loading, activity and stability remains a challenge for the anode of proton exchange membrane (PEM) water electrolyzers. Here we report a nano-size IrOx/Nafion® composite catalyst that exhibits both outstanding activity for oxygen evolution reaction (OER) and stability in a PEM water electrolyzer. The IrOx/Nafion® catalyst layer is fabricated using a flame-based cost-effect process, reactive spray deposition technology. The IrOx/Nafion® catalyst shows >10 times improvement in OER mass activity compared to IrOx nanoparticles synthesized using the wet chemistry method. The IrOx/Nafion® catalyst also achieved ∼4,500 h of stable operation in MEA electrolyzer at 1.8 A cm−2 and 80 °C with ultra-low iridium loading of 0.08 mg cm−2. Analysis of the IrOx structure and the electrochemical performance revealed three key factors for balancing high stability and activity: (1) high ratio of Ir (IV) to Ir (III) species and high content of hydroxide on the surface; (2) high anodic charge and surface area due to nano-size IrOx particles that are well-dispersed in the Nafion® ionomer electrolyte; (3) homogeneous anode catalyst layer morphology.</description><subject>Anodes</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Iridium</subject><subject>Iridium oxide</subject><subject>Load</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Organic chemistry</subject><subject>Oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Proton exchange membrane water electrolysis</subject><subject>Protons</subject><subject>Reactive spray deposition technology</subject><subject>Sedimentation & deposition</subject><subject>Spray deposition</subject><subject>Stability</subject><subject>Surface charge</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9rGzEQxUVpIa7bb5CDaM670T-vpEsgGDcJpHUP7VnIWq09ZrNyJDmu_emjZXvuYRgG3nu8-SF0TUlNCW1u97U9OJs3NSNU1UTWpBEf0IwqySuuFP-IZkSzpuJc8iv0OaU9IYRxpmYo_LRDqBJcPH6K67-4xNj-nDIOHd7Bdoety_AG-Yzt0OKU7Qb68YIB_1r9wCebfcS-9y7H0J8v5ThB3uFjn6Ot-nDCEKGF4wvug21h2H5BnzrbJ__1356jP99Xv5eP1fP64Wl5_1w5IUSuGFWsIZ0li45QLpWmG82VbamWwjIttWqd15S7RgviFkz7jXa8Idp2ssyCz9G3KTekDCY5yN7tXBiG0tTQpoRJXUQ3k-gQw-vRp2z24RiH0sswypiUXAlRVGJSuRhSir4zhwgvNp4NJWbkb_Zm4m9G_oZIU_gX291k8-XNN_BxbOEH51uIY4k2wP8D3gH6Fo_q</recordid><startdate>20181230</startdate><enddate>20181230</enddate><creator>Yu, Haoran</creator><creator>Danilovic, Nemanja</creator><creator>Wang, Yang</creator><creator>Willis, William</creator><creator>Poozhikunnath, Abhinav</creator><creator>Bonville, Leonard</creator><creator>Capuano, Chris</creator><creator>Ayers, Katherine</creator><creator>Maric, Radenka</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20181230</creationdate><title>Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading</title><author>Yu, Haoran ; Danilovic, Nemanja ; Wang, Yang ; Willis, William ; Poozhikunnath, Abhinav ; Bonville, Leonard ; Capuano, Chris ; Ayers, Katherine ; Maric, Radenka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-218260fa05f0137891b938ad1974a29798dce913c6940c529eb9c3609af79af53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Iridium</topic><topic>Iridium oxide</topic><topic>Load</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Organic chemistry</topic><topic>Oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Proton exchange membrane water electrolysis</topic><topic>Protons</topic><topic>Reactive spray deposition technology</topic><topic>Sedimentation & deposition</topic><topic>Spray deposition</topic><topic>Stability</topic><topic>Surface charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Haoran</creatorcontrib><creatorcontrib>Danilovic, Nemanja</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Willis, William</creatorcontrib><creatorcontrib>Poozhikunnath, Abhinav</creatorcontrib><creatorcontrib>Bonville, Leonard</creatorcontrib><creatorcontrib>Capuano, Chris</creatorcontrib><creatorcontrib>Ayers, Katherine</creatorcontrib><creatorcontrib>Maric, Radenka</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Haoran</au><au>Danilovic, Nemanja</au><au>Wang, Yang</au><au>Willis, William</au><au>Poozhikunnath, Abhinav</au><au>Bonville, Leonard</au><au>Capuano, Chris</au><au>Ayers, Katherine</au><au>Maric, Radenka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2018-12-30</date><risdate>2018</risdate><volume>239</volume><issue>C</issue><spage>133</spage><epage>146</epage><pages>133-146</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted]
•Nano-size IrOx/Nafion® catalyst is synthesized with a cost-effective process.•The IrOx/Nafion® catalyst shows excellent stability of 4,500 h in MEA test.•The iridium loading is reduced to 1/30th the commercial MEA loading.•Key factors are identified for achieving high OER activity and stability.
The balance of catalyst loading, activity and stability remains a challenge for the anode of proton exchange membrane (PEM) water electrolyzers. Here we report a nano-size IrOx/Nafion® composite catalyst that exhibits both outstanding activity for oxygen evolution reaction (OER) and stability in a PEM water electrolyzer. The IrOx/Nafion® catalyst layer is fabricated using a flame-based cost-effect process, reactive spray deposition technology. The IrOx/Nafion® catalyst shows >10 times improvement in OER mass activity compared to IrOx nanoparticles synthesized using the wet chemistry method. The IrOx/Nafion® catalyst also achieved ∼4,500 h of stable operation in MEA electrolyzer at 1.8 A cm−2 and 80 °C with ultra-low iridium loading of 0.08 mg cm−2. Analysis of the IrOx structure and the electrochemical performance revealed three key factors for balancing high stability and activity: (1) high ratio of Ir (IV) to Ir (III) species and high content of hydroxide on the surface; (2) high anodic charge and surface area due to nano-size IrOx particles that are well-dispersed in the Nafion® ionomer electrolyte; (3) homogeneous anode catalyst layer morphology.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2018.07.064</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2018-12, Vol.239 (C), p.133-146 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_osti_scitechconnect_1693879 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Anodes Catalysis Catalysts Chemical synthesis Electrochemical analysis Electrochemistry Electrolytes Iridium Iridium oxide Load Morphology Nanoparticles Organic chemistry Oxygen evolution reaction Oxygen evolution reactions Proton exchange membrane water electrolysis Protons Reactive spray deposition technology Sedimentation & deposition Spray deposition Stability Surface charge |
title | Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-size%20IrOx%20catalyst%20of%20high%20activity%20and%20stability%20in%20PEM%20water%20electrolyzer%20with%20ultra-low%20iridium%20loading&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Yu,%20Haoran&rft.date=2018-12-30&rft.volume=239&rft.issue=C&rft.spage=133&rft.epage=146&rft.pages=133-146&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2018.07.064&rft_dat=%3Cproquest_osti_%3E2122773844%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-218260fa05f0137891b938ad1974a29798dce913c6940c529eb9c3609af79af53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2122773844&rft_id=info:pmid/&rfr_iscdi=true |