Loading…
A predictive strain-gradient model with no undetermined constants or length scales
A general meso‑scale (GM) crystal plasticity (CP) model was developed that accounts for lower-order (strain hardening) and higher-order (internal stress) effects of geometrically necessary dislocations (GNDs). It is predictive: no arbitrary parameters or length scales were invoked and no ad hoc nume...
Saved in:
Published in: | Journal of the mechanics and physics of solids 2020-12, Vol.145, p.104178, Article 104178 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c399t-742d94b3384fcc4d6a6a41c57799b313d3268633322432912a9c5268d07f24433 |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-742d94b3384fcc4d6a6a41c57799b313d3268633322432912a9c5268d07f24433 |
container_end_page | |
container_issue | |
container_start_page | 104178 |
container_title | Journal of the mechanics and physics of solids |
container_volume | 145 |
creator | Zhou, G. Jeong, W. Homer, E.R. Fullwood, D.T. Lee, M.G. Kim, J.H. Lim, H. Zbib, H. Wagoner, R.H. |
description | A general meso‑scale (GM) crystal plasticity (CP) model was developed that accounts for lower-order (strain hardening) and higher-order (internal stress) effects of geometrically necessary dislocations (GNDs). It is predictive: no arbitrary parameters or length scales were invoked and no ad hoc numerical techniques were employed. It uses general stress field equations for GND content and a novel harmonization technique to enforce consistency of elastic long-range singular defect fields with applied elastic-plastic fields. The model facilitates implementation in commercial finite element programs without requiring special elements, special boundary conditions, or access to element shape functions. GM simulations confirmed, with improved accuracy, previously published predictions of the Hall-Petch effect, Bauschinger effect, and anelasticity. Previously unpredicted phenomena were also predicted: anelasticity and hysteresis for single Ta crystals and strain-hardening stagnation. The internal stresses (higher-order effect) dominate at large length scales, while at small length scales, the GND density hardening (lower-order effect) dominates. GM predicts that strain heterogeneity and consequent GND internal stresses are important factors in anelasticity. |
doi_str_mv | 10.1016/j.jmps.2020.104178 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1698022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509620304075</els_id><sourcerecordid>2486864873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-742d94b3384fcc4d6a6a41c57799b313d3268633322432912a9c5268d07f24433</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CroempunZmAm1K8QUEQXYc0OdNmaJOapBXf3gzj2lXg8P0n__kQuqFkSgmt7_tpv9unKSNsGAjatCdoQtuGV6Jp2SmaEMJYNSOyPkcXKfWEkBlp6AS9z_E-gnUmuyPglKN2vlpHbR34jHfBwhZ_u7zBPuCDt5Ah7pwHi03wKWufEw4Rb8GvC5OM3kK6Qmed3ia4_nsv0efT48fipVq-Pb8u5svKcClz1QhmpVhx3orOGGFrXWtBzaxppFxxyi1ndVtzzhkTnEnKtDSzMrKk6ZgQnF-i23FvSNmpZFwGsym1PJisaC3bcnKB7kZoH8PXAVJWfThEX3opJtrygSiSCsVGysSQUoRO7aPb6fijKFGDYNWrQbAaBKtRcAk9jCEoRx4dxKEDeFNsxqGCDe6_-C9fVoJC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486864873</pqid></control><display><type>article</type><title>A predictive strain-gradient model with no undetermined constants or length scales</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Zhou, G. ; Jeong, W. ; Homer, E.R. ; Fullwood, D.T. ; Lee, M.G. ; Kim, J.H. ; Lim, H. ; Zbib, H. ; Wagoner, R.H.</creator><creatorcontrib>Zhou, G. ; Jeong, W. ; Homer, E.R. ; Fullwood, D.T. ; Lee, M.G. ; Kim, J.H. ; Lim, H. ; Zbib, H. ; Wagoner, R.H. ; The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><description>A general meso‑scale (GM) crystal plasticity (CP) model was developed that accounts for lower-order (strain hardening) and higher-order (internal stress) effects of geometrically necessary dislocations (GNDs). It is predictive: no arbitrary parameters or length scales were invoked and no ad hoc numerical techniques were employed. It uses general stress field equations for GND content and a novel harmonization technique to enforce consistency of elastic long-range singular defect fields with applied elastic-plastic fields. The model facilitates implementation in commercial finite element programs without requiring special elements, special boundary conditions, or access to element shape functions. GM simulations confirmed, with improved accuracy, previously published predictions of the Hall-Petch effect, Bauschinger effect, and anelasticity. Previously unpredicted phenomena were also predicted: anelasticity and hysteresis for single Ta crystals and strain-hardening stagnation. The internal stresses (higher-order effect) dominate at large length scales, while at small length scales, the GND density hardening (lower-order effect) dominates. GM predicts that strain heterogeneity and consequent GND internal stresses are important factors in anelasticity.</description><identifier>ISSN: 0022-5096</identifier><identifier>EISSN: 1873-4782</identifier><identifier>DOI: 10.1016/j.jmps.2020.104178</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Anelasticity ; Bauschinger effect ; Boundary conditions ; Crystal Plasticity ; Finite Element ; GND ; Harmonization ; Heterogeneity ; MATERIALS SCIENCE ; Residual stress ; Shape functions ; Stagnation ; Strain Gradient ; Strain hardening ; Stress distribution ; Ta</subject><ispartof>Journal of the mechanics and physics of solids, 2020-12, Vol.145, p.104178, Article 104178</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-742d94b3384fcc4d6a6a41c57799b313d3268633322432912a9c5268d07f24433</citedby><cites>FETCH-LOGICAL-c399t-742d94b3384fcc4d6a6a41c57799b313d3268633322432912a9c5268d07f24433</cites><orcidid>0000000153325683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1698022$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, G.</creatorcontrib><creatorcontrib>Jeong, W.</creatorcontrib><creatorcontrib>Homer, E.R.</creatorcontrib><creatorcontrib>Fullwood, D.T.</creatorcontrib><creatorcontrib>Lee, M.G.</creatorcontrib><creatorcontrib>Kim, J.H.</creatorcontrib><creatorcontrib>Lim, H.</creatorcontrib><creatorcontrib>Zbib, H.</creatorcontrib><creatorcontrib>Wagoner, R.H.</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><title>A predictive strain-gradient model with no undetermined constants or length scales</title><title>Journal of the mechanics and physics of solids</title><description>A general meso‑scale (GM) crystal plasticity (CP) model was developed that accounts for lower-order (strain hardening) and higher-order (internal stress) effects of geometrically necessary dislocations (GNDs). It is predictive: no arbitrary parameters or length scales were invoked and no ad hoc numerical techniques were employed. It uses general stress field equations for GND content and a novel harmonization technique to enforce consistency of elastic long-range singular defect fields with applied elastic-plastic fields. The model facilitates implementation in commercial finite element programs without requiring special elements, special boundary conditions, or access to element shape functions. GM simulations confirmed, with improved accuracy, previously published predictions of the Hall-Petch effect, Bauschinger effect, and anelasticity. Previously unpredicted phenomena were also predicted: anelasticity and hysteresis for single Ta crystals and strain-hardening stagnation. The internal stresses (higher-order effect) dominate at large length scales, while at small length scales, the GND density hardening (lower-order effect) dominates. GM predicts that strain heterogeneity and consequent GND internal stresses are important factors in anelasticity.</description><subject>Anelasticity</subject><subject>Bauschinger effect</subject><subject>Boundary conditions</subject><subject>Crystal Plasticity</subject><subject>Finite Element</subject><subject>GND</subject><subject>Harmonization</subject><subject>Heterogeneity</subject><subject>MATERIALS SCIENCE</subject><subject>Residual stress</subject><subject>Shape functions</subject><subject>Stagnation</subject><subject>Strain Gradient</subject><subject>Strain hardening</subject><subject>Stress distribution</subject><subject>Ta</subject><issn>0022-5096</issn><issn>1873-4782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWC8v4CroempunZmAm1K8QUEQXYc0OdNmaJOapBXf3gzj2lXg8P0n__kQuqFkSgmt7_tpv9unKSNsGAjatCdoQtuGV6Jp2SmaEMJYNSOyPkcXKfWEkBlp6AS9z_E-gnUmuyPglKN2vlpHbR34jHfBwhZ_u7zBPuCDt5Ah7pwHi03wKWufEw4Rb8GvC5OM3kK6Qmed3ia4_nsv0efT48fipVq-Pb8u5svKcClz1QhmpVhx3orOGGFrXWtBzaxppFxxyi1ndVtzzhkTnEnKtDSzMrKk6ZgQnF-i23FvSNmpZFwGsym1PJisaC3bcnKB7kZoH8PXAVJWfThEX3opJtrygSiSCsVGysSQUoRO7aPb6fijKFGDYNWrQbAaBKtRcAk9jCEoRx4dxKEDeFNsxqGCDe6_-C9fVoJC</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zhou, G.</creator><creator>Jeong, W.</creator><creator>Homer, E.R.</creator><creator>Fullwood, D.T.</creator><creator>Lee, M.G.</creator><creator>Kim, J.H.</creator><creator>Lim, H.</creator><creator>Zbib, H.</creator><creator>Wagoner, R.H.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000153325683</orcidid></search><sort><creationdate>20201201</creationdate><title>A predictive strain-gradient model with no undetermined constants or length scales</title><author>Zhou, G. ; Jeong, W. ; Homer, E.R. ; Fullwood, D.T. ; Lee, M.G. ; Kim, J.H. ; Lim, H. ; Zbib, H. ; Wagoner, R.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-742d94b3384fcc4d6a6a41c57799b313d3268633322432912a9c5268d07f24433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anelasticity</topic><topic>Bauschinger effect</topic><topic>Boundary conditions</topic><topic>Crystal Plasticity</topic><topic>Finite Element</topic><topic>GND</topic><topic>Harmonization</topic><topic>Heterogeneity</topic><topic>MATERIALS SCIENCE</topic><topic>Residual stress</topic><topic>Shape functions</topic><topic>Stagnation</topic><topic>Strain Gradient</topic><topic>Strain hardening</topic><topic>Stress distribution</topic><topic>Ta</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, G.</creatorcontrib><creatorcontrib>Jeong, W.</creatorcontrib><creatorcontrib>Homer, E.R.</creatorcontrib><creatorcontrib>Fullwood, D.T.</creatorcontrib><creatorcontrib>Lee, M.G.</creatorcontrib><creatorcontrib>Kim, J.H.</creatorcontrib><creatorcontrib>Lim, H.</creatorcontrib><creatorcontrib>Zbib, H.</creatorcontrib><creatorcontrib>Wagoner, R.H.</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, G.</au><au>Jeong, W.</au><au>Homer, E.R.</au><au>Fullwood, D.T.</au><au>Lee, M.G.</au><au>Kim, J.H.</au><au>Lim, H.</au><au>Zbib, H.</au><au>Wagoner, R.H.</au><aucorp>The Ohio State Univ., Columbus, OH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A predictive strain-gradient model with no undetermined constants or length scales</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>145</volume><spage>104178</spage><pages>104178-</pages><artnum>104178</artnum><issn>0022-5096</issn><eissn>1873-4782</eissn><abstract>A general meso‑scale (GM) crystal plasticity (CP) model was developed that accounts for lower-order (strain hardening) and higher-order (internal stress) effects of geometrically necessary dislocations (GNDs). It is predictive: no arbitrary parameters or length scales were invoked and no ad hoc numerical techniques were employed. It uses general stress field equations for GND content and a novel harmonization technique to enforce consistency of elastic long-range singular defect fields with applied elastic-plastic fields. The model facilitates implementation in commercial finite element programs without requiring special elements, special boundary conditions, or access to element shape functions. GM simulations confirmed, with improved accuracy, previously published predictions of the Hall-Petch effect, Bauschinger effect, and anelasticity. Previously unpredicted phenomena were also predicted: anelasticity and hysteresis for single Ta crystals and strain-hardening stagnation. The internal stresses (higher-order effect) dominate at large length scales, while at small length scales, the GND density hardening (lower-order effect) dominates. GM predicts that strain heterogeneity and consequent GND internal stresses are important factors in anelasticity.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2020.104178</doi><orcidid>https://orcid.org/0000000153325683</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5096 |
ispartof | Journal of the mechanics and physics of solids, 2020-12, Vol.145, p.104178, Article 104178 |
issn | 0022-5096 1873-4782 |
language | eng |
recordid | cdi_osti_scitechconnect_1698022 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Anelasticity Bauschinger effect Boundary conditions Crystal Plasticity Finite Element GND Harmonization Heterogeneity MATERIALS SCIENCE Residual stress Shape functions Stagnation Strain Gradient Strain hardening Stress distribution Ta |
title | A predictive strain-gradient model with no undetermined constants or length scales |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20predictive%20strain-gradient%20model%20with%20no%20undetermined%20constants%20or%20length%20scales&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Zhou,%20G.&rft.aucorp=The%20Ohio%20State%20Univ.,%20Columbus,%20OH%20(United%20States)&rft.date=2020-12-01&rft.volume=145&rft.spage=104178&rft.pages=104178-&rft.artnum=104178&rft.issn=0022-5096&rft.eissn=1873-4782&rft_id=info:doi/10.1016/j.jmps.2020.104178&rft_dat=%3Cproquest_osti_%3E2486864873%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-742d94b3384fcc4d6a6a41c57799b313d3268633322432912a9c5268d07f24433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2486864873&rft_id=info:pmid/&rfr_iscdi=true |