Loading…

A predictive strain-gradient model with no undetermined constants or length scales

A general meso‑scale (GM) crystal plasticity (CP) model was developed that accounts for lower-order (strain hardening) and higher-order (internal stress) effects of geometrically necessary dislocations (GNDs). It is predictive: no arbitrary parameters or length scales were invoked and no ad hoc nume...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the mechanics and physics of solids 2020-12, Vol.145, p.104178, Article 104178
Main Authors: Zhou, G., Jeong, W., Homer, E.R., Fullwood, D.T., Lee, M.G., Kim, J.H., Lim, H., Zbib, H., Wagoner, R.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-742d94b3384fcc4d6a6a41c57799b313d3268633322432912a9c5268d07f24433
cites cdi_FETCH-LOGICAL-c399t-742d94b3384fcc4d6a6a41c57799b313d3268633322432912a9c5268d07f24433
container_end_page
container_issue
container_start_page 104178
container_title Journal of the mechanics and physics of solids
container_volume 145
creator Zhou, G.
Jeong, W.
Homer, E.R.
Fullwood, D.T.
Lee, M.G.
Kim, J.H.
Lim, H.
Zbib, H.
Wagoner, R.H.
description A general meso‑scale (GM) crystal plasticity (CP) model was developed that accounts for lower-order (strain hardening) and higher-order (internal stress) effects of geometrically necessary dislocations (GNDs). It is predictive: no arbitrary parameters or length scales were invoked and no ad hoc numerical techniques were employed. It uses general stress field equations for GND content and a novel harmonization technique to enforce consistency of elastic long-range singular defect fields with applied elastic-plastic fields. The model facilitates implementation in commercial finite element programs without requiring special elements, special boundary conditions, or access to element shape functions. GM simulations confirmed, with improved accuracy, previously published predictions of the Hall-Petch effect, Bauschinger effect, and anelasticity. Previously unpredicted phenomena were also predicted: anelasticity and hysteresis for single Ta crystals and strain-hardening stagnation. The internal stresses (higher-order effect) dominate at large length scales, while at small length scales, the GND density hardening (lower-order effect) dominates. GM predicts that strain heterogeneity and consequent GND internal stresses are important factors in anelasticity.
doi_str_mv 10.1016/j.jmps.2020.104178
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1698022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509620304075</els_id><sourcerecordid>2486864873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-742d94b3384fcc4d6a6a41c57799b313d3268633322432912a9c5268d07f24433</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CroempunZmAm1K8QUEQXYc0OdNmaJOapBXf3gzj2lXg8P0n__kQuqFkSgmt7_tpv9unKSNsGAjatCdoQtuGV6Jp2SmaEMJYNSOyPkcXKfWEkBlp6AS9z_E-gnUmuyPglKN2vlpHbR34jHfBwhZ_u7zBPuCDt5Ah7pwHi03wKWufEw4Rb8GvC5OM3kK6Qmed3ia4_nsv0efT48fipVq-Pb8u5svKcClz1QhmpVhx3orOGGFrXWtBzaxppFxxyi1ndVtzzhkTnEnKtDSzMrKk6ZgQnF-i23FvSNmpZFwGsym1PJisaC3bcnKB7kZoH8PXAVJWfThEX3opJtrygSiSCsVGysSQUoRO7aPb6fijKFGDYNWrQbAaBKtRcAk9jCEoRx4dxKEDeFNsxqGCDe6_-C9fVoJC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486864873</pqid></control><display><type>article</type><title>A predictive strain-gradient model with no undetermined constants or length scales</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Zhou, G. ; Jeong, W. ; Homer, E.R. ; Fullwood, D.T. ; Lee, M.G. ; Kim, J.H. ; Lim, H. ; Zbib, H. ; Wagoner, R.H.</creator><creatorcontrib>Zhou, G. ; Jeong, W. ; Homer, E.R. ; Fullwood, D.T. ; Lee, M.G. ; Kim, J.H. ; Lim, H. ; Zbib, H. ; Wagoner, R.H. ; The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><description>A general meso‑scale (GM) crystal plasticity (CP) model was developed that accounts for lower-order (strain hardening) and higher-order (internal stress) effects of geometrically necessary dislocations (GNDs). It is predictive: no arbitrary parameters or length scales were invoked and no ad hoc numerical techniques were employed. It uses general stress field equations for GND content and a novel harmonization technique to enforce consistency of elastic long-range singular defect fields with applied elastic-plastic fields. The model facilitates implementation in commercial finite element programs without requiring special elements, special boundary conditions, or access to element shape functions. GM simulations confirmed, with improved accuracy, previously published predictions of the Hall-Petch effect, Bauschinger effect, and anelasticity. Previously unpredicted phenomena were also predicted: anelasticity and hysteresis for single Ta crystals and strain-hardening stagnation. The internal stresses (higher-order effect) dominate at large length scales, while at small length scales, the GND density hardening (lower-order effect) dominates. GM predicts that strain heterogeneity and consequent GND internal stresses are important factors in anelasticity.</description><identifier>ISSN: 0022-5096</identifier><identifier>EISSN: 1873-4782</identifier><identifier>DOI: 10.1016/j.jmps.2020.104178</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Anelasticity ; Bauschinger effect ; Boundary conditions ; Crystal Plasticity ; Finite Element ; GND ; Harmonization ; Heterogeneity ; MATERIALS SCIENCE ; Residual stress ; Shape functions ; Stagnation ; Strain Gradient ; Strain hardening ; Stress distribution ; Ta</subject><ispartof>Journal of the mechanics and physics of solids, 2020-12, Vol.145, p.104178, Article 104178</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-742d94b3384fcc4d6a6a41c57799b313d3268633322432912a9c5268d07f24433</citedby><cites>FETCH-LOGICAL-c399t-742d94b3384fcc4d6a6a41c57799b313d3268633322432912a9c5268d07f24433</cites><orcidid>0000000153325683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1698022$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, G.</creatorcontrib><creatorcontrib>Jeong, W.</creatorcontrib><creatorcontrib>Homer, E.R.</creatorcontrib><creatorcontrib>Fullwood, D.T.</creatorcontrib><creatorcontrib>Lee, M.G.</creatorcontrib><creatorcontrib>Kim, J.H.</creatorcontrib><creatorcontrib>Lim, H.</creatorcontrib><creatorcontrib>Zbib, H.</creatorcontrib><creatorcontrib>Wagoner, R.H.</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><title>A predictive strain-gradient model with no undetermined constants or length scales</title><title>Journal of the mechanics and physics of solids</title><description>A general meso‑scale (GM) crystal plasticity (CP) model was developed that accounts for lower-order (strain hardening) and higher-order (internal stress) effects of geometrically necessary dislocations (GNDs). It is predictive: no arbitrary parameters or length scales were invoked and no ad hoc numerical techniques were employed. It uses general stress field equations for GND content and a novel harmonization technique to enforce consistency of elastic long-range singular defect fields with applied elastic-plastic fields. The model facilitates implementation in commercial finite element programs without requiring special elements, special boundary conditions, or access to element shape functions. GM simulations confirmed, with improved accuracy, previously published predictions of the Hall-Petch effect, Bauschinger effect, and anelasticity. Previously unpredicted phenomena were also predicted: anelasticity and hysteresis for single Ta crystals and strain-hardening stagnation. The internal stresses (higher-order effect) dominate at large length scales, while at small length scales, the GND density hardening (lower-order effect) dominates. GM predicts that strain heterogeneity and consequent GND internal stresses are important factors in anelasticity.</description><subject>Anelasticity</subject><subject>Bauschinger effect</subject><subject>Boundary conditions</subject><subject>Crystal Plasticity</subject><subject>Finite Element</subject><subject>GND</subject><subject>Harmonization</subject><subject>Heterogeneity</subject><subject>MATERIALS SCIENCE</subject><subject>Residual stress</subject><subject>Shape functions</subject><subject>Stagnation</subject><subject>Strain Gradient</subject><subject>Strain hardening</subject><subject>Stress distribution</subject><subject>Ta</subject><issn>0022-5096</issn><issn>1873-4782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWC8v4CroempunZmAm1K8QUEQXYc0OdNmaJOapBXf3gzj2lXg8P0n__kQuqFkSgmt7_tpv9unKSNsGAjatCdoQtuGV6Jp2SmaEMJYNSOyPkcXKfWEkBlp6AS9z_E-gnUmuyPglKN2vlpHbR34jHfBwhZ_u7zBPuCDt5Ah7pwHi03wKWufEw4Rb8GvC5OM3kK6Qmed3ia4_nsv0efT48fipVq-Pb8u5svKcClz1QhmpVhx3orOGGFrXWtBzaxppFxxyi1ndVtzzhkTnEnKtDSzMrKk6ZgQnF-i23FvSNmpZFwGsym1PJisaC3bcnKB7kZoH8PXAVJWfThEX3opJtrygSiSCsVGysSQUoRO7aPb6fijKFGDYNWrQbAaBKtRcAk9jCEoRx4dxKEDeFNsxqGCDe6_-C9fVoJC</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zhou, G.</creator><creator>Jeong, W.</creator><creator>Homer, E.R.</creator><creator>Fullwood, D.T.</creator><creator>Lee, M.G.</creator><creator>Kim, J.H.</creator><creator>Lim, H.</creator><creator>Zbib, H.</creator><creator>Wagoner, R.H.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000153325683</orcidid></search><sort><creationdate>20201201</creationdate><title>A predictive strain-gradient model with no undetermined constants or length scales</title><author>Zhou, G. ; Jeong, W. ; Homer, E.R. ; Fullwood, D.T. ; Lee, M.G. ; Kim, J.H. ; Lim, H. ; Zbib, H. ; Wagoner, R.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-742d94b3384fcc4d6a6a41c57799b313d3268633322432912a9c5268d07f24433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anelasticity</topic><topic>Bauschinger effect</topic><topic>Boundary conditions</topic><topic>Crystal Plasticity</topic><topic>Finite Element</topic><topic>GND</topic><topic>Harmonization</topic><topic>Heterogeneity</topic><topic>MATERIALS SCIENCE</topic><topic>Residual stress</topic><topic>Shape functions</topic><topic>Stagnation</topic><topic>Strain Gradient</topic><topic>Strain hardening</topic><topic>Stress distribution</topic><topic>Ta</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, G.</creatorcontrib><creatorcontrib>Jeong, W.</creatorcontrib><creatorcontrib>Homer, E.R.</creatorcontrib><creatorcontrib>Fullwood, D.T.</creatorcontrib><creatorcontrib>Lee, M.G.</creatorcontrib><creatorcontrib>Kim, J.H.</creatorcontrib><creatorcontrib>Lim, H.</creatorcontrib><creatorcontrib>Zbib, H.</creatorcontrib><creatorcontrib>Wagoner, R.H.</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, G.</au><au>Jeong, W.</au><au>Homer, E.R.</au><au>Fullwood, D.T.</au><au>Lee, M.G.</au><au>Kim, J.H.</au><au>Lim, H.</au><au>Zbib, H.</au><au>Wagoner, R.H.</au><aucorp>The Ohio State Univ., Columbus, OH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A predictive strain-gradient model with no undetermined constants or length scales</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>145</volume><spage>104178</spage><pages>104178-</pages><artnum>104178</artnum><issn>0022-5096</issn><eissn>1873-4782</eissn><abstract>A general meso‑scale (GM) crystal plasticity (CP) model was developed that accounts for lower-order (strain hardening) and higher-order (internal stress) effects of geometrically necessary dislocations (GNDs). It is predictive: no arbitrary parameters or length scales were invoked and no ad hoc numerical techniques were employed. It uses general stress field equations for GND content and a novel harmonization technique to enforce consistency of elastic long-range singular defect fields with applied elastic-plastic fields. The model facilitates implementation in commercial finite element programs without requiring special elements, special boundary conditions, or access to element shape functions. GM simulations confirmed, with improved accuracy, previously published predictions of the Hall-Petch effect, Bauschinger effect, and anelasticity. Previously unpredicted phenomena were also predicted: anelasticity and hysteresis for single Ta crystals and strain-hardening stagnation. The internal stresses (higher-order effect) dominate at large length scales, while at small length scales, the GND density hardening (lower-order effect) dominates. GM predicts that strain heterogeneity and consequent GND internal stresses are important factors in anelasticity.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2020.104178</doi><orcidid>https://orcid.org/0000000153325683</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2020-12, Vol.145, p.104178, Article 104178
issn 0022-5096
1873-4782
language eng
recordid cdi_osti_scitechconnect_1698022
source ScienceDirect Freedom Collection 2022-2024
subjects Anelasticity
Bauschinger effect
Boundary conditions
Crystal Plasticity
Finite Element
GND
Harmonization
Heterogeneity
MATERIALS SCIENCE
Residual stress
Shape functions
Stagnation
Strain Gradient
Strain hardening
Stress distribution
Ta
title A predictive strain-gradient model with no undetermined constants or length scales
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20predictive%20strain-gradient%20model%20with%20no%20undetermined%20constants%20or%20length%20scales&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Zhou,%20G.&rft.aucorp=The%20Ohio%20State%20Univ.,%20Columbus,%20OH%20(United%20States)&rft.date=2020-12-01&rft.volume=145&rft.spage=104178&rft.pages=104178-&rft.artnum=104178&rft.issn=0022-5096&rft.eissn=1873-4782&rft_id=info:doi/10.1016/j.jmps.2020.104178&rft_dat=%3Cproquest_osti_%3E2486864873%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-742d94b3384fcc4d6a6a41c57799b313d3268633322432912a9c5268d07f24433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2486864873&rft_id=info:pmid/&rfr_iscdi=true