Loading…
Photoinduced Dirac semimetal in ZrTe5
Novel phases of matter with unique properties that emerge from quantum and topological protection present an important thrust of modern research. Of particular interest is to engineer these phases on demand using ultrafast external stimuli, such as photoexcitation, which offers prospects of their in...
Saved in:
Published in: | npj quantum materials 2020-11, Vol.5 (1), Article 80 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-eef48d0f248ab9b300336e9210abce88a89a17616c6ee246a6fbee851fc943f23 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-eef48d0f248ab9b300336e9210abce88a89a17616c6ee246a6fbee851fc943f23 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | npj quantum materials |
container_volume | 5 |
creator | Konstantinova, T. Wu, L. Yin, W.-G. Tao, J. Gu, G. D. Wang, X. J. Yang, Jie Zaliznyak, I. A. Zhu, Y. |
description | Novel phases of matter with unique properties that emerge from quantum and topological protection present an important thrust of modern research. Of particular interest is to engineer these phases on demand using ultrafast external stimuli, such as photoexcitation, which offers prospects of their integration into future devices compatible with optical communication and information technology. Here, we use MeV Ultrafast Electron Diffraction (UED) to show how a transient three-dimensional (3D) Dirac semimetal state can be induced by a femtosecond laser pulse in a topological insulator ZrTe
5
. We observe marked changes in Bragg diffraction, which are characteristic of bond distortions in the photoinduced state. Using the atomic positions refined from the UED, we perform density functional theory (DFT) analysis of the electronic band structure. Our results reveal that the equilibrium state of ZrTe
5
is a topological insulator with a small band gap of
~
25 meV, consistent with angle-resolved photoemission (ARPES) experiments. However, the gap is closed in the presence of strong spin-orbit coupling (SOC) in the photoinduced transient state, where massless Dirac fermions emerge in the chiral band structure. The time scale of the relaxation dynamics to the transient Dirac semimetal state is remarkably long,
τ
~ 160 ps, which is two orders of magnitude longer than the conventional phonon-driven structural relaxation. The long relaxation is consistent with the vanishing density of states in Dirac spectrum and slow spin-repolarization of the SOC-controlled band structure accompanying the emergence of Dirac fermions.
The photon-induced changes in local atomic bond length of ZrTe
5
reveal electronic topological phase transition from weak topological insulator to Dirac semimetal. |
doi_str_mv | 10.1038/s41535-020-00280-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1702284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471532489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-eef48d0f248ab9b300336e9210abce88a89a17616c6ee246a6fbee851fc943f23</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpH2CKQIyG80cce0TlU6oEQ1lYLMc901RtUuxk4N9jCBJMTHfD8753egg5ZXDJQOirJFkpSgocKADXQPUBmXBhKiqV1Id_9mMyS2kDmWJMS6Um5OJ53fVd064Gj6viponOFwl3zQ57ty2atniNSyxPyFFw24SznzklL3e3y_kDXTzdP86vF9QLAz1FDFKvIHCpXW1qASCEQsMZuNqj1k4bxyrFlFeIXCqnQo2oSxa8kSJwMSVnY2-X-sYm3_To175rW_S9ZRVwrmWGzkdoH7v3AVNvN90Q2_yX5bLKKvJ5kyk-Uj52KUUMdh-bnYsfloH90mZHbTZrs9_arM4hMYZShts3jL_V_6Q-Abp-bRs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471532489</pqid></control><display><type>article</type><title>Photoinduced Dirac semimetal in ZrTe5</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Konstantinova, T. ; Wu, L. ; Yin, W.-G. ; Tao, J. ; Gu, G. D. ; Wang, X. J. ; Yang, Jie ; Zaliznyak, I. A. ; Zhu, Y.</creator><creatorcontrib>Konstantinova, T. ; Wu, L. ; Yin, W.-G. ; Tao, J. ; Gu, G. D. ; Wang, X. J. ; Yang, Jie ; Zaliznyak, I. A. ; Zhu, Y. ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)</creatorcontrib><description>Novel phases of matter with unique properties that emerge from quantum and topological protection present an important thrust of modern research. Of particular interest is to engineer these phases on demand using ultrafast external stimuli, such as photoexcitation, which offers prospects of their integration into future devices compatible with optical communication and information technology. Here, we use MeV Ultrafast Electron Diffraction (UED) to show how a transient three-dimensional (3D) Dirac semimetal state can be induced by a femtosecond laser pulse in a topological insulator ZrTe
5
. We observe marked changes in Bragg diffraction, which are characteristic of bond distortions in the photoinduced state. Using the atomic positions refined from the UED, we perform density functional theory (DFT) analysis of the electronic band structure. Our results reveal that the equilibrium state of ZrTe
5
is a topological insulator with a small band gap of
~
25 meV, consistent with angle-resolved photoemission (ARPES) experiments. However, the gap is closed in the presence of strong spin-orbit coupling (SOC) in the photoinduced transient state, where massless Dirac fermions emerge in the chiral band structure. The time scale of the relaxation dynamics to the transient Dirac semimetal state is remarkably long,
τ
~ 160 ps, which is two orders of magnitude longer than the conventional phonon-driven structural relaxation. The long relaxation is consistent with the vanishing density of states in Dirac spectrum and slow spin-repolarization of the SOC-controlled band structure accompanying the emergence of Dirac fermions.
The photon-induced changes in local atomic bond length of ZrTe
5
reveal electronic topological phase transition from weak topological insulator to Dirac semimetal.</description><identifier>ISSN: 2397-4648</identifier><identifier>EISSN: 2397-4648</identifier><identifier>DOI: 10.1038/s41535-020-00280-8</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/2792/4128 ; 639/301/119/995 ; Band structure of solids ; Chemical bonds ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Density functional theory ; Electron diffraction ; Electronic devices ; Electronic properties and materials ; Femtosecond pulses ; Fermions ; Optical communication ; Phase transitions ; Photoelectric emission ; Photoexcitation ; Physics ; Physics and Astronomy ; Quantum Physics ; Spin-orbit interactions ; Structural Materials ; Surfaces and Interfaces ; Technology utilization ; Thin Films ; Topological insulators</subject><ispartof>npj quantum materials, 2020-11, Vol.5 (1), Article 80</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-eef48d0f248ab9b300336e9210abce88a89a17616c6ee246a6fbee851fc943f23</citedby><cites>FETCH-LOGICAL-c390t-eef48d0f248ab9b300336e9210abce88a89a17616c6ee246a6fbee851fc943f23</cites><orcidid>0000-0003-3324-4709 ; 0000-0002-8548-7924 ; 0000-0002-4965-5329 ; 0000-0002-8443-250X ; 0000000249655329 ; 0000000333244709 ; 0000000285487924 ; 000000028443250X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2471532489?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1702284$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Konstantinova, T.</creatorcontrib><creatorcontrib>Wu, L.</creatorcontrib><creatorcontrib>Yin, W.-G.</creatorcontrib><creatorcontrib>Tao, J.</creatorcontrib><creatorcontrib>Gu, G. D.</creatorcontrib><creatorcontrib>Wang, X. J.</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Zaliznyak, I. A.</creatorcontrib><creatorcontrib>Zhu, Y.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)</creatorcontrib><title>Photoinduced Dirac semimetal in ZrTe5</title><title>npj quantum materials</title><addtitle>npj Quantum Mater</addtitle><description>Novel phases of matter with unique properties that emerge from quantum and topological protection present an important thrust of modern research. Of particular interest is to engineer these phases on demand using ultrafast external stimuli, such as photoexcitation, which offers prospects of their integration into future devices compatible with optical communication and information technology. Here, we use MeV Ultrafast Electron Diffraction (UED) to show how a transient three-dimensional (3D) Dirac semimetal state can be induced by a femtosecond laser pulse in a topological insulator ZrTe
5
. We observe marked changes in Bragg diffraction, which are characteristic of bond distortions in the photoinduced state. Using the atomic positions refined from the UED, we perform density functional theory (DFT) analysis of the electronic band structure. Our results reveal that the equilibrium state of ZrTe
5
is a topological insulator with a small band gap of
~
25 meV, consistent with angle-resolved photoemission (ARPES) experiments. However, the gap is closed in the presence of strong spin-orbit coupling (SOC) in the photoinduced transient state, where massless Dirac fermions emerge in the chiral band structure. The time scale of the relaxation dynamics to the transient Dirac semimetal state is remarkably long,
τ
~ 160 ps, which is two orders of magnitude longer than the conventional phonon-driven structural relaxation. The long relaxation is consistent with the vanishing density of states in Dirac spectrum and slow spin-repolarization of the SOC-controlled band structure accompanying the emergence of Dirac fermions.
The photon-induced changes in local atomic bond length of ZrTe
5
reveal electronic topological phase transition from weak topological insulator to Dirac semimetal.</description><subject>639/301/119/2792/4128</subject><subject>639/301/119/995</subject><subject>Band structure of solids</subject><subject>Chemical bonds</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Density functional theory</subject><subject>Electron diffraction</subject><subject>Electronic devices</subject><subject>Electronic properties and materials</subject><subject>Femtosecond pulses</subject><subject>Fermions</subject><subject>Optical communication</subject><subject>Phase transitions</subject><subject>Photoelectric emission</subject><subject>Photoexcitation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Spin-orbit interactions</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Technology utilization</subject><subject>Thin Films</subject><subject>Topological insulators</subject><issn>2397-4648</issn><issn>2397-4648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kD1PwzAQhi0EElXpH2CKQIyG80cce0TlU6oEQ1lYLMc901RtUuxk4N9jCBJMTHfD8753egg5ZXDJQOirJFkpSgocKADXQPUBmXBhKiqV1Id_9mMyS2kDmWJMS6Um5OJ53fVd064Gj6viponOFwl3zQ57ty2atniNSyxPyFFw24SznzklL3e3y_kDXTzdP86vF9QLAz1FDFKvIHCpXW1qASCEQsMZuNqj1k4bxyrFlFeIXCqnQo2oSxa8kSJwMSVnY2-X-sYm3_To175rW_S9ZRVwrmWGzkdoH7v3AVNvN90Q2_yX5bLKKvJ5kyk-Uj52KUUMdh-bnYsfloH90mZHbTZrs9_arM4hMYZShts3jL_V_6Q-Abp-bRs</recordid><startdate>20201104</startdate><enddate>20201104</enddate><creator>Konstantinova, T.</creator><creator>Wu, L.</creator><creator>Yin, W.-G.</creator><creator>Tao, J.</creator><creator>Gu, G. D.</creator><creator>Wang, X. J.</creator><creator>Yang, Jie</creator><creator>Zaliznyak, I. A.</creator><creator>Zhu, Y.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3324-4709</orcidid><orcidid>https://orcid.org/0000-0002-8548-7924</orcidid><orcidid>https://orcid.org/0000-0002-4965-5329</orcidid><orcidid>https://orcid.org/0000-0002-8443-250X</orcidid><orcidid>https://orcid.org/0000000249655329</orcidid><orcidid>https://orcid.org/0000000333244709</orcidid><orcidid>https://orcid.org/0000000285487924</orcidid><orcidid>https://orcid.org/000000028443250X</orcidid></search><sort><creationdate>20201104</creationdate><title>Photoinduced Dirac semimetal in ZrTe5</title><author>Konstantinova, T. ; Wu, L. ; Yin, W.-G. ; Tao, J. ; Gu, G. D. ; Wang, X. J. ; Yang, Jie ; Zaliznyak, I. A. ; Zhu, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-eef48d0f248ab9b300336e9210abce88a89a17616c6ee246a6fbee851fc943f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/119/2792/4128</topic><topic>639/301/119/995</topic><topic>Band structure of solids</topic><topic>Chemical bonds</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Density functional theory</topic><topic>Electron diffraction</topic><topic>Electronic devices</topic><topic>Electronic properties and materials</topic><topic>Femtosecond pulses</topic><topic>Fermions</topic><topic>Optical communication</topic><topic>Phase transitions</topic><topic>Photoelectric emission</topic><topic>Photoexcitation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Spin-orbit interactions</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Technology utilization</topic><topic>Thin Films</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konstantinova, T.</creatorcontrib><creatorcontrib>Wu, L.</creatorcontrib><creatorcontrib>Yin, W.-G.</creatorcontrib><creatorcontrib>Tao, J.</creatorcontrib><creatorcontrib>Gu, G. D.</creatorcontrib><creatorcontrib>Wang, X. J.</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Zaliznyak, I. A.</creatorcontrib><creatorcontrib>Zhu, Y.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV</collection><jtitle>npj quantum materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konstantinova, T.</au><au>Wu, L.</au><au>Yin, W.-G.</au><au>Tao, J.</au><au>Gu, G. D.</au><au>Wang, X. J.</au><au>Yang, Jie</au><au>Zaliznyak, I. A.</au><au>Zhu, Y.</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoinduced Dirac semimetal in ZrTe5</atitle><jtitle>npj quantum materials</jtitle><stitle>npj Quantum Mater</stitle><date>2020-11-04</date><risdate>2020</risdate><volume>5</volume><issue>1</issue><artnum>80</artnum><issn>2397-4648</issn><eissn>2397-4648</eissn><abstract>Novel phases of matter with unique properties that emerge from quantum and topological protection present an important thrust of modern research. Of particular interest is to engineer these phases on demand using ultrafast external stimuli, such as photoexcitation, which offers prospects of their integration into future devices compatible with optical communication and information technology. Here, we use MeV Ultrafast Electron Diffraction (UED) to show how a transient three-dimensional (3D) Dirac semimetal state can be induced by a femtosecond laser pulse in a topological insulator ZrTe
5
. We observe marked changes in Bragg diffraction, which are characteristic of bond distortions in the photoinduced state. Using the atomic positions refined from the UED, we perform density functional theory (DFT) analysis of the electronic band structure. Our results reveal that the equilibrium state of ZrTe
5
is a topological insulator with a small band gap of
~
25 meV, consistent with angle-resolved photoemission (ARPES) experiments. However, the gap is closed in the presence of strong spin-orbit coupling (SOC) in the photoinduced transient state, where massless Dirac fermions emerge in the chiral band structure. The time scale of the relaxation dynamics to the transient Dirac semimetal state is remarkably long,
τ
~ 160 ps, which is two orders of magnitude longer than the conventional phonon-driven structural relaxation. The long relaxation is consistent with the vanishing density of states in Dirac spectrum and slow spin-repolarization of the SOC-controlled band structure accompanying the emergence of Dirac fermions.
The photon-induced changes in local atomic bond length of ZrTe
5
reveal electronic topological phase transition from weak topological insulator to Dirac semimetal.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41535-020-00280-8</doi><orcidid>https://orcid.org/0000-0003-3324-4709</orcidid><orcidid>https://orcid.org/0000-0002-8548-7924</orcidid><orcidid>https://orcid.org/0000-0002-4965-5329</orcidid><orcidid>https://orcid.org/0000-0002-8443-250X</orcidid><orcidid>https://orcid.org/0000000249655329</orcidid><orcidid>https://orcid.org/0000000333244709</orcidid><orcidid>https://orcid.org/0000000285487924</orcidid><orcidid>https://orcid.org/000000028443250X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-4648 |
ispartof | npj quantum materials, 2020-11, Vol.5 (1), Article 80 |
issn | 2397-4648 2397-4648 |
language | eng |
recordid | cdi_osti_scitechconnect_1702284 |
source | Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/119/2792/4128 639/301/119/995 Band structure of solids Chemical bonds Condensed Matter Physics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Density functional theory Electron diffraction Electronic devices Electronic properties and materials Femtosecond pulses Fermions Optical communication Phase transitions Photoelectric emission Photoexcitation Physics Physics and Astronomy Quantum Physics Spin-orbit interactions Structural Materials Surfaces and Interfaces Technology utilization Thin Films Topological insulators |
title | Photoinduced Dirac semimetal in ZrTe5 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A13%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoinduced%20Dirac%20semimetal%20in%20ZrTe5&rft.jtitle=npj%20quantum%20materials&rft.au=Konstantinova,%20T.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-11-04&rft.volume=5&rft.issue=1&rft.artnum=80&rft.issn=2397-4648&rft.eissn=2397-4648&rft_id=info:doi/10.1038/s41535-020-00280-8&rft_dat=%3Cproquest_osti_%3E2471532489%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-eef48d0f248ab9b300336e9210abce88a89a17616c6ee246a6fbee851fc943f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471532489&rft_id=info:pmid/&rfr_iscdi=true |