Loading…
Immobilizing Pertechnetate in Ettringite via Sulfate Substitution
Technetium-99 immobilization in low-temperature nuclear waste forms often relies on additives that reduce environmentally mobile pertechnetate (TcO4 –) to insoluble Tc(IV) species. However, this is a short-lived solution unless reducing conditions are maintained over the hazardous life cycle of rad...
Saved in:
Published in: | Environmental science & technology 2020-11, Vol.54 (21), p.13610-13618 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a495t-4bc959ed5ba3eb32b14f62d06ddd27a8edd00661fd4358f63247c43e6730de263 |
---|---|
cites | cdi_FETCH-LOGICAL-a495t-4bc959ed5ba3eb32b14f62d06ddd27a8edd00661fd4358f63247c43e6730de263 |
container_end_page | 13618 |
container_issue | 21 |
container_start_page | 13610 |
container_title | Environmental science & technology |
container_volume | 54 |
creator | Saslow, Sarah A Kerisit, Sebastien N Varga, Tamas Mergelsberg, Sebastian T Corkhill, Claire L Snyder, Michelle M. V Avalos, Nancy M Yorkshire, Antonia S Bailey, Daniel J Crum, Jarrod Asmussen, R. Matthew |
description | Technetium-99 immobilization in low-temperature nuclear waste forms often relies on additives that reduce environmentally mobile pertechnetate (TcO4 –) to insoluble Tc(IV) species. However, this is a short-lived solution unless reducing conditions are maintained over the hazardous life cycle of radioactive wastes (some ∼10,000 years). Considering recent experimental observations, this work explores how rapid formation of ettringite [Ca6Al2(SO4)3(OH)12·26(H2O)], a common mineral formed in cementitious waste forms, may be used to directly immobilize TcO4 –. Results from ab initio molecular dynamics (AIMD) simulations and solid-phase characterization techniques, including synchrotron X-ray absorption, fluorescence, and diffraction methods, support successful incorporation of TcO4 – into the ettringite crystal structure via sulfate substitution when synthesized by aqueous precipitation methods. One sulfate and one water are replaced with one TcO4 – and one OH– during substitution, where Ca2+-coordinated water near the substitution site is deprotonated to form OH– for charge compensation upon TcO4 – substitution. Furthermore, AIMD calculations support favorable TcO4 – substitution at the SO4 2– site in ettringite rather than gypsum (CaSO4·2H2O, formed as a secondary mineral phase) by at least 0.76 eV at 298 K. These results are the first of their kind to suggest that ettringite may contribute to TcO4 – immobilization and the overall lifetime performance of cementitious waste forms. |
doi_str_mv | 10.1021/acs.est.0c03119 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1713319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466059883</sourcerecordid><originalsourceid>FETCH-LOGICAL-a495t-4bc959ed5ba3eb32b14f62d06ddd27a8edd00661fd4358f63247c43e6730de263</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMobk7P3qToUbp9-dn2OMbUgaAwBW-hTVLNWNvZpIL-9aZ07uYphO953-_jQegSwxQDwbNcualxfgoKKMbZERpjTiDmKcfHaAyAaZxR8TZCZ85tAIBQSE_RiJIMg2B8jOarqmoKu7U_tn6Pnk3rjfqojc-9iWwdLb1vw8CG35fNo3W3LfvJuiuct77ztqnP0UmZb5252L8T9Hq3fFk8xI9P96vF_DHOWcZ9zAqV8cxoXuTUFJQUmJWCaBBaa5LkqdEaQAhcakZ5WgpKWKIYNSKhoA0RdIKuh94mrJZO2f5S1dS1UV7iBFOKswDdDNCubT67YEZumq6tw12SMCGAZ2lKAzUbKNU2zrWmlLvWVnn7LTHI3qsMXmWf3nsNiat9b1dURh_4P5EBuB2APnnY-V_dL0v-grY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466059883</pqid></control><display><type>article</type><title>Immobilizing Pertechnetate in Ettringite via Sulfate Substitution</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Saslow, Sarah A ; Kerisit, Sebastien N ; Varga, Tamas ; Mergelsberg, Sebastian T ; Corkhill, Claire L ; Snyder, Michelle M. V ; Avalos, Nancy M ; Yorkshire, Antonia S ; Bailey, Daniel J ; Crum, Jarrod ; Asmussen, R. Matthew</creator><creatorcontrib>Saslow, Sarah A ; Kerisit, Sebastien N ; Varga, Tamas ; Mergelsberg, Sebastian T ; Corkhill, Claire L ; Snyder, Michelle M. V ; Avalos, Nancy M ; Yorkshire, Antonia S ; Bailey, Daniel J ; Crum, Jarrod ; Asmussen, R. Matthew ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Technetium-99 immobilization in low-temperature nuclear waste forms often relies on additives that reduce environmentally mobile pertechnetate (TcO4 –) to insoluble Tc(IV) species. However, this is a short-lived solution unless reducing conditions are maintained over the hazardous life cycle of radioactive wastes (some ∼10,000 years). Considering recent experimental observations, this work explores how rapid formation of ettringite [Ca6Al2(SO4)3(OH)12·26(H2O)], a common mineral formed in cementitious waste forms, may be used to directly immobilize TcO4 –. Results from ab initio molecular dynamics (AIMD) simulations and solid-phase characterization techniques, including synchrotron X-ray absorption, fluorescence, and diffraction methods, support successful incorporation of TcO4 – into the ettringite crystal structure via sulfate substitution when synthesized by aqueous precipitation methods. One sulfate and one water are replaced with one TcO4 – and one OH– during substitution, where Ca2+-coordinated water near the substitution site is deprotonated to form OH– for charge compensation upon TcO4 – substitution. Furthermore, AIMD calculations support favorable TcO4 – substitution at the SO4 2– site in ettringite rather than gypsum (CaSO4·2H2O, formed as a secondary mineral phase) by at least 0.76 eV at 298 K. These results are the first of their kind to suggest that ettringite may contribute to TcO4 – immobilization and the overall lifetime performance of cementitious waste forms.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c03119</identifier><identifier>PMID: 32910645</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Ab initio molecular dynamics ; Additives ; Anions ; Calcium ; Calcium ions ; Contaminants in Aquatic and Terrestrial Environments ; Crystal structure ; Ettringite ; Fluorescence ; Gypsum ; Immobilization ; Lattices ; Life cycles ; Low temperature ; MATERIALS SCIENCE ; Minerals ; Molecular dynamics ; Physical and chemical processes ; Radioactive Waste ; Radioactive wastes ; Sodium Pertechnetate Tc 99m ; Solid phases ; Substitutes ; Sulfates ; Synchrotron radiation ; Synchrotrons ; Technetium ; Technetium isotopes ; X ray absorption</subject><ispartof>Environmental science & technology, 2020-11, Vol.54 (21), p.13610-13618</ispartof><rights>Copyright American Chemical Society Nov 3, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a495t-4bc959ed5ba3eb32b14f62d06ddd27a8edd00661fd4358f63247c43e6730de263</citedby><cites>FETCH-LOGICAL-a495t-4bc959ed5ba3eb32b14f62d06ddd27a8edd00661fd4358f63247c43e6730de263</cites><orcidid>0000-0002-7470-9181 ; 0000-0002-5492-866X ; 0000-0002-7488-3219 ; 0000-0002-8385-2676 ; 0000-0003-3483-5244 ; 0000-0001-8073-4642 ; 0000000180734642 ; 000000025492866X ; 0000000274709181 ; 0000000334835244 ; 0000000283852676 ; 0000000159777728 ; 0000000274883219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32910645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1713319$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Saslow, Sarah A</creatorcontrib><creatorcontrib>Kerisit, Sebastien N</creatorcontrib><creatorcontrib>Varga, Tamas</creatorcontrib><creatorcontrib>Mergelsberg, Sebastian T</creatorcontrib><creatorcontrib>Corkhill, Claire L</creatorcontrib><creatorcontrib>Snyder, Michelle M. V</creatorcontrib><creatorcontrib>Avalos, Nancy M</creatorcontrib><creatorcontrib>Yorkshire, Antonia S</creatorcontrib><creatorcontrib>Bailey, Daniel J</creatorcontrib><creatorcontrib>Crum, Jarrod</creatorcontrib><creatorcontrib>Asmussen, R. Matthew</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Immobilizing Pertechnetate in Ettringite via Sulfate Substitution</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Technetium-99 immobilization in low-temperature nuclear waste forms often relies on additives that reduce environmentally mobile pertechnetate (TcO4 –) to insoluble Tc(IV) species. However, this is a short-lived solution unless reducing conditions are maintained over the hazardous life cycle of radioactive wastes (some ∼10,000 years). Considering recent experimental observations, this work explores how rapid formation of ettringite [Ca6Al2(SO4)3(OH)12·26(H2O)], a common mineral formed in cementitious waste forms, may be used to directly immobilize TcO4 –. Results from ab initio molecular dynamics (AIMD) simulations and solid-phase characterization techniques, including synchrotron X-ray absorption, fluorescence, and diffraction methods, support successful incorporation of TcO4 – into the ettringite crystal structure via sulfate substitution when synthesized by aqueous precipitation methods. One sulfate and one water are replaced with one TcO4 – and one OH– during substitution, where Ca2+-coordinated water near the substitution site is deprotonated to form OH– for charge compensation upon TcO4 – substitution. Furthermore, AIMD calculations support favorable TcO4 – substitution at the SO4 2– site in ettringite rather than gypsum (CaSO4·2H2O, formed as a secondary mineral phase) by at least 0.76 eV at 298 K. These results are the first of their kind to suggest that ettringite may contribute to TcO4 – immobilization and the overall lifetime performance of cementitious waste forms.</description><subject>Ab initio molecular dynamics</subject><subject>Additives</subject><subject>Anions</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Contaminants in Aquatic and Terrestrial Environments</subject><subject>Crystal structure</subject><subject>Ettringite</subject><subject>Fluorescence</subject><subject>Gypsum</subject><subject>Immobilization</subject><subject>Lattices</subject><subject>Life cycles</subject><subject>Low temperature</subject><subject>MATERIALS SCIENCE</subject><subject>Minerals</subject><subject>Molecular dynamics</subject><subject>Physical and chemical processes</subject><subject>Radioactive Waste</subject><subject>Radioactive wastes</subject><subject>Sodium Pertechnetate Tc 99m</subject><subject>Solid phases</subject><subject>Substitutes</subject><subject>Sulfates</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Technetium</subject><subject>Technetium isotopes</subject><subject>X ray absorption</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMobk7P3qToUbp9-dn2OMbUgaAwBW-hTVLNWNvZpIL-9aZ07uYphO953-_jQegSwxQDwbNcualxfgoKKMbZERpjTiDmKcfHaAyAaZxR8TZCZ85tAIBQSE_RiJIMg2B8jOarqmoKu7U_tn6Pnk3rjfqojc-9iWwdLb1vw8CG35fNo3W3LfvJuiuct77ztqnP0UmZb5252L8T9Hq3fFk8xI9P96vF_DHOWcZ9zAqV8cxoXuTUFJQUmJWCaBBaa5LkqdEaQAhcakZ5WgpKWKIYNSKhoA0RdIKuh94mrJZO2f5S1dS1UV7iBFOKswDdDNCubT67YEZumq6tw12SMCGAZ2lKAzUbKNU2zrWmlLvWVnn7LTHI3qsMXmWf3nsNiat9b1dURh_4P5EBuB2APnnY-V_dL0v-grY</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>Saslow, Sarah A</creator><creator>Kerisit, Sebastien N</creator><creator>Varga, Tamas</creator><creator>Mergelsberg, Sebastian T</creator><creator>Corkhill, Claire L</creator><creator>Snyder, Michelle M. V</creator><creator>Avalos, Nancy M</creator><creator>Yorkshire, Antonia S</creator><creator>Bailey, Daniel J</creator><creator>Crum, Jarrod</creator><creator>Asmussen, R. Matthew</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7470-9181</orcidid><orcidid>https://orcid.org/0000-0002-5492-866X</orcidid><orcidid>https://orcid.org/0000-0002-7488-3219</orcidid><orcidid>https://orcid.org/0000-0002-8385-2676</orcidid><orcidid>https://orcid.org/0000-0003-3483-5244</orcidid><orcidid>https://orcid.org/0000-0001-8073-4642</orcidid><orcidid>https://orcid.org/0000000180734642</orcidid><orcidid>https://orcid.org/000000025492866X</orcidid><orcidid>https://orcid.org/0000000274709181</orcidid><orcidid>https://orcid.org/0000000334835244</orcidid><orcidid>https://orcid.org/0000000283852676</orcidid><orcidid>https://orcid.org/0000000159777728</orcidid><orcidid>https://orcid.org/0000000274883219</orcidid></search><sort><creationdate>20201103</creationdate><title>Immobilizing Pertechnetate in Ettringite via Sulfate Substitution</title><author>Saslow, Sarah A ; Kerisit, Sebastien N ; Varga, Tamas ; Mergelsberg, Sebastian T ; Corkhill, Claire L ; Snyder, Michelle M. V ; Avalos, Nancy M ; Yorkshire, Antonia S ; Bailey, Daniel J ; Crum, Jarrod ; Asmussen, R. Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a495t-4bc959ed5ba3eb32b14f62d06ddd27a8edd00661fd4358f63247c43e6730de263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ab initio molecular dynamics</topic><topic>Additives</topic><topic>Anions</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Contaminants in Aquatic and Terrestrial Environments</topic><topic>Crystal structure</topic><topic>Ettringite</topic><topic>Fluorescence</topic><topic>Gypsum</topic><topic>Immobilization</topic><topic>Lattices</topic><topic>Life cycles</topic><topic>Low temperature</topic><topic>MATERIALS SCIENCE</topic><topic>Minerals</topic><topic>Molecular dynamics</topic><topic>Physical and chemical processes</topic><topic>Radioactive Waste</topic><topic>Radioactive wastes</topic><topic>Sodium Pertechnetate Tc 99m</topic><topic>Solid phases</topic><topic>Substitutes</topic><topic>Sulfates</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Technetium</topic><topic>Technetium isotopes</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saslow, Sarah A</creatorcontrib><creatorcontrib>Kerisit, Sebastien N</creatorcontrib><creatorcontrib>Varga, Tamas</creatorcontrib><creatorcontrib>Mergelsberg, Sebastian T</creatorcontrib><creatorcontrib>Corkhill, Claire L</creatorcontrib><creatorcontrib>Snyder, Michelle M. V</creatorcontrib><creatorcontrib>Avalos, Nancy M</creatorcontrib><creatorcontrib>Yorkshire, Antonia S</creatorcontrib><creatorcontrib>Bailey, Daniel J</creatorcontrib><creatorcontrib>Crum, Jarrod</creatorcontrib><creatorcontrib>Asmussen, R. Matthew</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saslow, Sarah A</au><au>Kerisit, Sebastien N</au><au>Varga, Tamas</au><au>Mergelsberg, Sebastian T</au><au>Corkhill, Claire L</au><au>Snyder, Michelle M. V</au><au>Avalos, Nancy M</au><au>Yorkshire, Antonia S</au><au>Bailey, Daniel J</au><au>Crum, Jarrod</au><au>Asmussen, R. Matthew</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilizing Pertechnetate in Ettringite via Sulfate Substitution</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-11-03</date><risdate>2020</risdate><volume>54</volume><issue>21</issue><spage>13610</spage><epage>13618</epage><pages>13610-13618</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Technetium-99 immobilization in low-temperature nuclear waste forms often relies on additives that reduce environmentally mobile pertechnetate (TcO4 –) to insoluble Tc(IV) species. However, this is a short-lived solution unless reducing conditions are maintained over the hazardous life cycle of radioactive wastes (some ∼10,000 years). Considering recent experimental observations, this work explores how rapid formation of ettringite [Ca6Al2(SO4)3(OH)12·26(H2O)], a common mineral formed in cementitious waste forms, may be used to directly immobilize TcO4 –. Results from ab initio molecular dynamics (AIMD) simulations and solid-phase characterization techniques, including synchrotron X-ray absorption, fluorescence, and diffraction methods, support successful incorporation of TcO4 – into the ettringite crystal structure via sulfate substitution when synthesized by aqueous precipitation methods. One sulfate and one water are replaced with one TcO4 – and one OH– during substitution, where Ca2+-coordinated water near the substitution site is deprotonated to form OH– for charge compensation upon TcO4 – substitution. Furthermore, AIMD calculations support favorable TcO4 – substitution at the SO4 2– site in ettringite rather than gypsum (CaSO4·2H2O, formed as a secondary mineral phase) by at least 0.76 eV at 298 K. These results are the first of their kind to suggest that ettringite may contribute to TcO4 – immobilization and the overall lifetime performance of cementitious waste forms.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32910645</pmid><doi>10.1021/acs.est.0c03119</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7470-9181</orcidid><orcidid>https://orcid.org/0000-0002-5492-866X</orcidid><orcidid>https://orcid.org/0000-0002-7488-3219</orcidid><orcidid>https://orcid.org/0000-0002-8385-2676</orcidid><orcidid>https://orcid.org/0000-0003-3483-5244</orcidid><orcidid>https://orcid.org/0000-0001-8073-4642</orcidid><orcidid>https://orcid.org/0000000180734642</orcidid><orcidid>https://orcid.org/000000025492866X</orcidid><orcidid>https://orcid.org/0000000274709181</orcidid><orcidid>https://orcid.org/0000000334835244</orcidid><orcidid>https://orcid.org/0000000283852676</orcidid><orcidid>https://orcid.org/0000000159777728</orcidid><orcidid>https://orcid.org/0000000274883219</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2020-11, Vol.54 (21), p.13610-13618 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_osti_scitechconnect_1713319 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Ab initio molecular dynamics Additives Anions Calcium Calcium ions Contaminants in Aquatic and Terrestrial Environments Crystal structure Ettringite Fluorescence Gypsum Immobilization Lattices Life cycles Low temperature MATERIALS SCIENCE Minerals Molecular dynamics Physical and chemical processes Radioactive Waste Radioactive wastes Sodium Pertechnetate Tc 99m Solid phases Substitutes Sulfates Synchrotron radiation Synchrotrons Technetium Technetium isotopes X ray absorption |
title | Immobilizing Pertechnetate in Ettringite via Sulfate Substitution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilizing%20Pertechnetate%20in%20Ettringite%20via%20Sulfate%20Substitution&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Saslow,%20Sarah%20A&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2020-11-03&rft.volume=54&rft.issue=21&rft.spage=13610&rft.epage=13618&rft.pages=13610-13618&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c03119&rft_dat=%3Cproquest_osti_%3E2466059883%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a495t-4bc959ed5ba3eb32b14f62d06ddd27a8edd00661fd4358f63247c43e6730de263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2466059883&rft_id=info:pmid/32910645&rfr_iscdi=true |