Loading…

Immobilizing Pertechnetate in Ettringite via Sulfate Substitution

Technetium-99 immobilization in low-temperature nuclear waste forms often relies on additives that reduce environmentally mobile pertechnetate (TcO4 –) to insoluble Tc­(IV) species. However, this is a short-lived solution unless reducing conditions are maintained over the hazardous life cycle of rad...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2020-11, Vol.54 (21), p.13610-13618
Main Authors: Saslow, Sarah A, Kerisit, Sebastien N, Varga, Tamas, Mergelsberg, Sebastian T, Corkhill, Claire L, Snyder, Michelle M. V, Avalos, Nancy M, Yorkshire, Antonia S, Bailey, Daniel J, Crum, Jarrod, Asmussen, R. Matthew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a495t-4bc959ed5ba3eb32b14f62d06ddd27a8edd00661fd4358f63247c43e6730de263
cites cdi_FETCH-LOGICAL-a495t-4bc959ed5ba3eb32b14f62d06ddd27a8edd00661fd4358f63247c43e6730de263
container_end_page 13618
container_issue 21
container_start_page 13610
container_title Environmental science & technology
container_volume 54
creator Saslow, Sarah A
Kerisit, Sebastien N
Varga, Tamas
Mergelsberg, Sebastian T
Corkhill, Claire L
Snyder, Michelle M. V
Avalos, Nancy M
Yorkshire, Antonia S
Bailey, Daniel J
Crum, Jarrod
Asmussen, R. Matthew
description Technetium-99 immobilization in low-temperature nuclear waste forms often relies on additives that reduce environmentally mobile pertechnetate (TcO4 –) to insoluble Tc­(IV) species. However, this is a short-lived solution unless reducing conditions are maintained over the hazardous life cycle of radioactive wastes (some ∼10,000 years). Considering recent experimental observations, this work explores how rapid formation of ettringite [Ca6Al2(SO4)3(OH)12·26­(H2O)], a common mineral formed in cementitious waste forms, may be used to directly immobilize TcO4 –. Results from ab initio molecular dynamics (AIMD) simulations and solid-phase characterization techniques, including synchrotron X-ray absorption, fluorescence, and diffraction methods, support successful incorporation of TcO4 – into the ettringite crystal structure via sulfate substitution when synthesized by aqueous precipitation methods. One sulfate and one water are replaced with one TcO4 – and one OH– during substitution, where Ca2+-coordinated water near the substitution site is deprotonated to form OH– for charge compensation upon TcO4 – substitution. Furthermore, AIMD calculations support favorable TcO4 – substitution at the SO4 2– site in ettringite rather than gypsum (CaSO4·2H2O, formed as a secondary mineral phase) by at least 0.76 eV at 298 K. These results are the first of their kind to suggest that ettringite may contribute to TcO4 – immobilization and the overall lifetime performance of cementitious waste forms.
doi_str_mv 10.1021/acs.est.0c03119
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1713319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466059883</sourcerecordid><originalsourceid>FETCH-LOGICAL-a495t-4bc959ed5ba3eb32b14f62d06ddd27a8edd00661fd4358f63247c43e6730de263</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMobk7P3qToUbp9-dn2OMbUgaAwBW-hTVLNWNvZpIL-9aZ07uYphO953-_jQegSwxQDwbNcualxfgoKKMbZERpjTiDmKcfHaAyAaZxR8TZCZ85tAIBQSE_RiJIMg2B8jOarqmoKu7U_tn6Pnk3rjfqojc-9iWwdLb1vw8CG35fNo3W3LfvJuiuct77ztqnP0UmZb5252L8T9Hq3fFk8xI9P96vF_DHOWcZ9zAqV8cxoXuTUFJQUmJWCaBBaa5LkqdEaQAhcakZ5WgpKWKIYNSKhoA0RdIKuh94mrJZO2f5S1dS1UV7iBFOKswDdDNCubT67YEZumq6tw12SMCGAZ2lKAzUbKNU2zrWmlLvWVnn7LTHI3qsMXmWf3nsNiat9b1dURh_4P5EBuB2APnnY-V_dL0v-grY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466059883</pqid></control><display><type>article</type><title>Immobilizing Pertechnetate in Ettringite via Sulfate Substitution</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Saslow, Sarah A ; Kerisit, Sebastien N ; Varga, Tamas ; Mergelsberg, Sebastian T ; Corkhill, Claire L ; Snyder, Michelle M. V ; Avalos, Nancy M ; Yorkshire, Antonia S ; Bailey, Daniel J ; Crum, Jarrod ; Asmussen, R. Matthew</creator><creatorcontrib>Saslow, Sarah A ; Kerisit, Sebastien N ; Varga, Tamas ; Mergelsberg, Sebastian T ; Corkhill, Claire L ; Snyder, Michelle M. V ; Avalos, Nancy M ; Yorkshire, Antonia S ; Bailey, Daniel J ; Crum, Jarrod ; Asmussen, R. Matthew ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Technetium-99 immobilization in low-temperature nuclear waste forms often relies on additives that reduce environmentally mobile pertechnetate (TcO4 –) to insoluble Tc­(IV) species. However, this is a short-lived solution unless reducing conditions are maintained over the hazardous life cycle of radioactive wastes (some ∼10,000 years). Considering recent experimental observations, this work explores how rapid formation of ettringite [Ca6Al2(SO4)3(OH)12·26­(H2O)], a common mineral formed in cementitious waste forms, may be used to directly immobilize TcO4 –. Results from ab initio molecular dynamics (AIMD) simulations and solid-phase characterization techniques, including synchrotron X-ray absorption, fluorescence, and diffraction methods, support successful incorporation of TcO4 – into the ettringite crystal structure via sulfate substitution when synthesized by aqueous precipitation methods. One sulfate and one water are replaced with one TcO4 – and one OH– during substitution, where Ca2+-coordinated water near the substitution site is deprotonated to form OH– for charge compensation upon TcO4 – substitution. Furthermore, AIMD calculations support favorable TcO4 – substitution at the SO4 2– site in ettringite rather than gypsum (CaSO4·2H2O, formed as a secondary mineral phase) by at least 0.76 eV at 298 K. These results are the first of their kind to suggest that ettringite may contribute to TcO4 – immobilization and the overall lifetime performance of cementitious waste forms.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c03119</identifier><identifier>PMID: 32910645</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Ab initio molecular dynamics ; Additives ; Anions ; Calcium ; Calcium ions ; Contaminants in Aquatic and Terrestrial Environments ; Crystal structure ; Ettringite ; Fluorescence ; Gypsum ; Immobilization ; Lattices ; Life cycles ; Low temperature ; MATERIALS SCIENCE ; Minerals ; Molecular dynamics ; Physical and chemical processes ; Radioactive Waste ; Radioactive wastes ; Sodium Pertechnetate Tc 99m ; Solid phases ; Substitutes ; Sulfates ; Synchrotron radiation ; Synchrotrons ; Technetium ; Technetium isotopes ; X ray absorption</subject><ispartof>Environmental science &amp; technology, 2020-11, Vol.54 (21), p.13610-13618</ispartof><rights>Copyright American Chemical Society Nov 3, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a495t-4bc959ed5ba3eb32b14f62d06ddd27a8edd00661fd4358f63247c43e6730de263</citedby><cites>FETCH-LOGICAL-a495t-4bc959ed5ba3eb32b14f62d06ddd27a8edd00661fd4358f63247c43e6730de263</cites><orcidid>0000-0002-7470-9181 ; 0000-0002-5492-866X ; 0000-0002-7488-3219 ; 0000-0002-8385-2676 ; 0000-0003-3483-5244 ; 0000-0001-8073-4642 ; 0000000180734642 ; 000000025492866X ; 0000000274709181 ; 0000000334835244 ; 0000000283852676 ; 0000000159777728 ; 0000000274883219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32910645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1713319$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Saslow, Sarah A</creatorcontrib><creatorcontrib>Kerisit, Sebastien N</creatorcontrib><creatorcontrib>Varga, Tamas</creatorcontrib><creatorcontrib>Mergelsberg, Sebastian T</creatorcontrib><creatorcontrib>Corkhill, Claire L</creatorcontrib><creatorcontrib>Snyder, Michelle M. V</creatorcontrib><creatorcontrib>Avalos, Nancy M</creatorcontrib><creatorcontrib>Yorkshire, Antonia S</creatorcontrib><creatorcontrib>Bailey, Daniel J</creatorcontrib><creatorcontrib>Crum, Jarrod</creatorcontrib><creatorcontrib>Asmussen, R. Matthew</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Immobilizing Pertechnetate in Ettringite via Sulfate Substitution</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Technetium-99 immobilization in low-temperature nuclear waste forms often relies on additives that reduce environmentally mobile pertechnetate (TcO4 –) to insoluble Tc­(IV) species. However, this is a short-lived solution unless reducing conditions are maintained over the hazardous life cycle of radioactive wastes (some ∼10,000 years). Considering recent experimental observations, this work explores how rapid formation of ettringite [Ca6Al2(SO4)3(OH)12·26­(H2O)], a common mineral formed in cementitious waste forms, may be used to directly immobilize TcO4 –. Results from ab initio molecular dynamics (AIMD) simulations and solid-phase characterization techniques, including synchrotron X-ray absorption, fluorescence, and diffraction methods, support successful incorporation of TcO4 – into the ettringite crystal structure via sulfate substitution when synthesized by aqueous precipitation methods. One sulfate and one water are replaced with one TcO4 – and one OH– during substitution, where Ca2+-coordinated water near the substitution site is deprotonated to form OH– for charge compensation upon TcO4 – substitution. Furthermore, AIMD calculations support favorable TcO4 – substitution at the SO4 2– site in ettringite rather than gypsum (CaSO4·2H2O, formed as a secondary mineral phase) by at least 0.76 eV at 298 K. These results are the first of their kind to suggest that ettringite may contribute to TcO4 – immobilization and the overall lifetime performance of cementitious waste forms.</description><subject>Ab initio molecular dynamics</subject><subject>Additives</subject><subject>Anions</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Contaminants in Aquatic and Terrestrial Environments</subject><subject>Crystal structure</subject><subject>Ettringite</subject><subject>Fluorescence</subject><subject>Gypsum</subject><subject>Immobilization</subject><subject>Lattices</subject><subject>Life cycles</subject><subject>Low temperature</subject><subject>MATERIALS SCIENCE</subject><subject>Minerals</subject><subject>Molecular dynamics</subject><subject>Physical and chemical processes</subject><subject>Radioactive Waste</subject><subject>Radioactive wastes</subject><subject>Sodium Pertechnetate Tc 99m</subject><subject>Solid phases</subject><subject>Substitutes</subject><subject>Sulfates</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Technetium</subject><subject>Technetium isotopes</subject><subject>X ray absorption</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMobk7P3qToUbp9-dn2OMbUgaAwBW-hTVLNWNvZpIL-9aZ07uYphO953-_jQegSwxQDwbNcualxfgoKKMbZERpjTiDmKcfHaAyAaZxR8TZCZ85tAIBQSE_RiJIMg2B8jOarqmoKu7U_tn6Pnk3rjfqojc-9iWwdLb1vw8CG35fNo3W3LfvJuiuct77ztqnP0UmZb5252L8T9Hq3fFk8xI9P96vF_DHOWcZ9zAqV8cxoXuTUFJQUmJWCaBBaa5LkqdEaQAhcakZ5WgpKWKIYNSKhoA0RdIKuh94mrJZO2f5S1dS1UV7iBFOKswDdDNCubT67YEZumq6tw12SMCGAZ2lKAzUbKNU2zrWmlLvWVnn7LTHI3qsMXmWf3nsNiat9b1dURh_4P5EBuB2APnnY-V_dL0v-grY</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>Saslow, Sarah A</creator><creator>Kerisit, Sebastien N</creator><creator>Varga, Tamas</creator><creator>Mergelsberg, Sebastian T</creator><creator>Corkhill, Claire L</creator><creator>Snyder, Michelle M. V</creator><creator>Avalos, Nancy M</creator><creator>Yorkshire, Antonia S</creator><creator>Bailey, Daniel J</creator><creator>Crum, Jarrod</creator><creator>Asmussen, R. Matthew</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7470-9181</orcidid><orcidid>https://orcid.org/0000-0002-5492-866X</orcidid><orcidid>https://orcid.org/0000-0002-7488-3219</orcidid><orcidid>https://orcid.org/0000-0002-8385-2676</orcidid><orcidid>https://orcid.org/0000-0003-3483-5244</orcidid><orcidid>https://orcid.org/0000-0001-8073-4642</orcidid><orcidid>https://orcid.org/0000000180734642</orcidid><orcidid>https://orcid.org/000000025492866X</orcidid><orcidid>https://orcid.org/0000000274709181</orcidid><orcidid>https://orcid.org/0000000334835244</orcidid><orcidid>https://orcid.org/0000000283852676</orcidid><orcidid>https://orcid.org/0000000159777728</orcidid><orcidid>https://orcid.org/0000000274883219</orcidid></search><sort><creationdate>20201103</creationdate><title>Immobilizing Pertechnetate in Ettringite via Sulfate Substitution</title><author>Saslow, Sarah A ; Kerisit, Sebastien N ; Varga, Tamas ; Mergelsberg, Sebastian T ; Corkhill, Claire L ; Snyder, Michelle M. V ; Avalos, Nancy M ; Yorkshire, Antonia S ; Bailey, Daniel J ; Crum, Jarrod ; Asmussen, R. Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a495t-4bc959ed5ba3eb32b14f62d06ddd27a8edd00661fd4358f63247c43e6730de263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ab initio molecular dynamics</topic><topic>Additives</topic><topic>Anions</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Contaminants in Aquatic and Terrestrial Environments</topic><topic>Crystal structure</topic><topic>Ettringite</topic><topic>Fluorescence</topic><topic>Gypsum</topic><topic>Immobilization</topic><topic>Lattices</topic><topic>Life cycles</topic><topic>Low temperature</topic><topic>MATERIALS SCIENCE</topic><topic>Minerals</topic><topic>Molecular dynamics</topic><topic>Physical and chemical processes</topic><topic>Radioactive Waste</topic><topic>Radioactive wastes</topic><topic>Sodium Pertechnetate Tc 99m</topic><topic>Solid phases</topic><topic>Substitutes</topic><topic>Sulfates</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Technetium</topic><topic>Technetium isotopes</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saslow, Sarah A</creatorcontrib><creatorcontrib>Kerisit, Sebastien N</creatorcontrib><creatorcontrib>Varga, Tamas</creatorcontrib><creatorcontrib>Mergelsberg, Sebastian T</creatorcontrib><creatorcontrib>Corkhill, Claire L</creatorcontrib><creatorcontrib>Snyder, Michelle M. V</creatorcontrib><creatorcontrib>Avalos, Nancy M</creatorcontrib><creatorcontrib>Yorkshire, Antonia S</creatorcontrib><creatorcontrib>Bailey, Daniel J</creatorcontrib><creatorcontrib>Crum, Jarrod</creatorcontrib><creatorcontrib>Asmussen, R. Matthew</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saslow, Sarah A</au><au>Kerisit, Sebastien N</au><au>Varga, Tamas</au><au>Mergelsberg, Sebastian T</au><au>Corkhill, Claire L</au><au>Snyder, Michelle M. V</au><au>Avalos, Nancy M</au><au>Yorkshire, Antonia S</au><au>Bailey, Daniel J</au><au>Crum, Jarrod</au><au>Asmussen, R. Matthew</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilizing Pertechnetate in Ettringite via Sulfate Substitution</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-11-03</date><risdate>2020</risdate><volume>54</volume><issue>21</issue><spage>13610</spage><epage>13618</epage><pages>13610-13618</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Technetium-99 immobilization in low-temperature nuclear waste forms often relies on additives that reduce environmentally mobile pertechnetate (TcO4 –) to insoluble Tc­(IV) species. However, this is a short-lived solution unless reducing conditions are maintained over the hazardous life cycle of radioactive wastes (some ∼10,000 years). Considering recent experimental observations, this work explores how rapid formation of ettringite [Ca6Al2(SO4)3(OH)12·26­(H2O)], a common mineral formed in cementitious waste forms, may be used to directly immobilize TcO4 –. Results from ab initio molecular dynamics (AIMD) simulations and solid-phase characterization techniques, including synchrotron X-ray absorption, fluorescence, and diffraction methods, support successful incorporation of TcO4 – into the ettringite crystal structure via sulfate substitution when synthesized by aqueous precipitation methods. One sulfate and one water are replaced with one TcO4 – and one OH– during substitution, where Ca2+-coordinated water near the substitution site is deprotonated to form OH– for charge compensation upon TcO4 – substitution. Furthermore, AIMD calculations support favorable TcO4 – substitution at the SO4 2– site in ettringite rather than gypsum (CaSO4·2H2O, formed as a secondary mineral phase) by at least 0.76 eV at 298 K. These results are the first of their kind to suggest that ettringite may contribute to TcO4 – immobilization and the overall lifetime performance of cementitious waste forms.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32910645</pmid><doi>10.1021/acs.est.0c03119</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7470-9181</orcidid><orcidid>https://orcid.org/0000-0002-5492-866X</orcidid><orcidid>https://orcid.org/0000-0002-7488-3219</orcidid><orcidid>https://orcid.org/0000-0002-8385-2676</orcidid><orcidid>https://orcid.org/0000-0003-3483-5244</orcidid><orcidid>https://orcid.org/0000-0001-8073-4642</orcidid><orcidid>https://orcid.org/0000000180734642</orcidid><orcidid>https://orcid.org/000000025492866X</orcidid><orcidid>https://orcid.org/0000000274709181</orcidid><orcidid>https://orcid.org/0000000334835244</orcidid><orcidid>https://orcid.org/0000000283852676</orcidid><orcidid>https://orcid.org/0000000159777728</orcidid><orcidid>https://orcid.org/0000000274883219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2020-11, Vol.54 (21), p.13610-13618
issn 0013-936X
1520-5851
language eng
recordid cdi_osti_scitechconnect_1713319
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Ab initio molecular dynamics
Additives
Anions
Calcium
Calcium ions
Contaminants in Aquatic and Terrestrial Environments
Crystal structure
Ettringite
Fluorescence
Gypsum
Immobilization
Lattices
Life cycles
Low temperature
MATERIALS SCIENCE
Minerals
Molecular dynamics
Physical and chemical processes
Radioactive Waste
Radioactive wastes
Sodium Pertechnetate Tc 99m
Solid phases
Substitutes
Sulfates
Synchrotron radiation
Synchrotrons
Technetium
Technetium isotopes
X ray absorption
title Immobilizing Pertechnetate in Ettringite via Sulfate Substitution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilizing%20Pertechnetate%20in%20Ettringite%20via%20Sulfate%20Substitution&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Saslow,%20Sarah%20A&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2020-11-03&rft.volume=54&rft.issue=21&rft.spage=13610&rft.epage=13618&rft.pages=13610-13618&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c03119&rft_dat=%3Cproquest_osti_%3E2466059883%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a495t-4bc959ed5ba3eb32b14f62d06ddd27a8edd00661fd4358f63247c43e6730de263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2466059883&rft_id=info:pmid/32910645&rfr_iscdi=true