Loading…
Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction
In this paper, we propose a variational approach to estimate eddy viscosity using forward sensitivity method (FSM) for closure modeling in nonlinear reduced order models. FSM is a data assimilation technique that blends model's predictions with noisy observations to correct initial state and/or...
Saved in:
Published in: | Physical review. E 2020-10, Vol.102 (4), p.043302-043302, Article 043302 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-d54097a4bec0716c81820fc27c4fe47e0581ae6e7cb5c41a44aa9bd8b5242fbe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-d54097a4bec0716c81820fc27c4fe47e0581ae6e7cb5c41a44aa9bd8b5242fbe3 |
container_end_page | 043302 |
container_issue | 4 |
container_start_page | 043302 |
container_title | Physical review. E |
container_volume | 102 |
creator | Ahmed, Shady E. Bhar, Kinjal San, Omer Rasheed, Adil |
description | In this paper, we propose a variational approach to estimate eddy viscosity using forward sensitivity method (FSM) for closure modeling in nonlinear reduced order models. FSM is a data assimilation technique that blends model's predictions with noisy observations to correct initial state and/or model parameters. We apply this approach on a projection based reduced order model (ROM) of the one-dimensional viscous Burgers equation with a square wave defining a moving shock, and the two-dimensional vorticity transport equation formulating a decay of Kraichnan turbulence. We investigate the capability of the approach to approximate an optimal value for eddy viscosity with different measurement configurations. Specifically, we show that our approach can sufficiently assimilate information either through full field or sparse noisy measurements to estimate eddy viscosity closure to cure standard Galerkin reduced order model (GROM) predictions. Therefore, our approach provides a modular framework to correct forecasting error from a sparse observational network on a latent space. We highlight that the proposed GROM-FSM framework is promising for emerging digital twin applications, where real-time sensor measurements can be used to update and optimize surrogate model's parameters. |
doi_str_mv | 10.1103/PhysRevE.102.043302 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1737507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463102073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-d54097a4bec0716c81820fc27c4fe47e0581ae6e7cb5c41a44aa9bd8b5242fbe3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWGp_gZfFk5fW2Y9k06OUVoWCInpeN5uJXUl3625Syb93JepphuFheN8nyy4pLCgFfvO0G-IzHtcLCmwBgnNgJ9mECQlzgJyf_u8iP89mMX4AAC1gKSmbZG8bH750qElEF21nj7YbiD4cgtdmRxofCMbO7nVn3TvBuh7I0Ubj4w9mWh_7gJFYR5x3rXWoA9n7GlsSsO5NZ727yM4a3Uac_c5p9rpZv6zu59vHu4fV7XZueC66eZ2LlEiLCg1IWpiSlgwaw6QRDQqJkJdUY4HSVLkRVAuh9bKqyypngjUV8ml2Nf71Ka-KxnZodsY7h6ZTVHKZg0zQ9Qilfp99aqb2qQ22rXbo-6iYKHiymMiE8hE1wccYsFGHkDyEQVFQP97Vn_d0YGr0zr8B8Jt5tw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463102073</pqid></control><display><type>article</type><title>Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Ahmed, Shady E. ; Bhar, Kinjal ; San, Omer ; Rasheed, Adil</creator><creatorcontrib>Ahmed, Shady E. ; Bhar, Kinjal ; San, Omer ; Rasheed, Adil ; Oklahoma State Univ., Stillwater, OK (United States)</creatorcontrib><description>In this paper, we propose a variational approach to estimate eddy viscosity using forward sensitivity method (FSM) for closure modeling in nonlinear reduced order models. FSM is a data assimilation technique that blends model's predictions with noisy observations to correct initial state and/or model parameters. We apply this approach on a projection based reduced order model (ROM) of the one-dimensional viscous Burgers equation with a square wave defining a moving shock, and the two-dimensional vorticity transport equation formulating a decay of Kraichnan turbulence. We investigate the capability of the approach to approximate an optimal value for eddy viscosity with different measurement configurations. Specifically, we show that our approach can sufficiently assimilate information either through full field or sparse noisy measurements to estimate eddy viscosity closure to cure standard Galerkin reduced order model (GROM) predictions. Therefore, our approach provides a modular framework to correct forecasting error from a sparse observational network on a latent space. We highlight that the proposed GROM-FSM framework is promising for emerging digital twin applications, where real-time sensor measurements can be used to update and optimize surrogate model's parameters.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.102.043302</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Burgers equation ; closure modeling ; ENGINEERING ; Forward sensitivity method ; Galerkin projection ; moving shock ; proper orthogonal decomposition ; reduced order modeling</subject><ispartof>Physical review. E, 2020-10, Vol.102 (4), p.043302-043302, Article 043302</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-d54097a4bec0716c81820fc27c4fe47e0581ae6e7cb5c41a44aa9bd8b5242fbe3</citedby><cites>FETCH-LOGICAL-c354t-d54097a4bec0716c81820fc27c4fe47e0581ae6e7cb5c41a44aa9bd8b5242fbe3</cites><orcidid>0000-0002-2241-4648 ; 0000-0003-2690-983X ; 0000-0001-5548-0265 ; 0000000155480265 ; 000000032690983X ; 0000000222414648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1737507$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, Shady E.</creatorcontrib><creatorcontrib>Bhar, Kinjal</creatorcontrib><creatorcontrib>San, Omer</creatorcontrib><creatorcontrib>Rasheed, Adil</creatorcontrib><creatorcontrib>Oklahoma State Univ., Stillwater, OK (United States)</creatorcontrib><title>Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction</title><title>Physical review. E</title><description>In this paper, we propose a variational approach to estimate eddy viscosity using forward sensitivity method (FSM) for closure modeling in nonlinear reduced order models. FSM is a data assimilation technique that blends model's predictions with noisy observations to correct initial state and/or model parameters. We apply this approach on a projection based reduced order model (ROM) of the one-dimensional viscous Burgers equation with a square wave defining a moving shock, and the two-dimensional vorticity transport equation formulating a decay of Kraichnan turbulence. We investigate the capability of the approach to approximate an optimal value for eddy viscosity with different measurement configurations. Specifically, we show that our approach can sufficiently assimilate information either through full field or sparse noisy measurements to estimate eddy viscosity closure to cure standard Galerkin reduced order model (GROM) predictions. Therefore, our approach provides a modular framework to correct forecasting error from a sparse observational network on a latent space. We highlight that the proposed GROM-FSM framework is promising for emerging digital twin applications, where real-time sensor measurements can be used to update and optimize surrogate model's parameters.</description><subject>Burgers equation</subject><subject>closure modeling</subject><subject>ENGINEERING</subject><subject>Forward sensitivity method</subject><subject>Galerkin projection</subject><subject>moving shock</subject><subject>proper orthogonal decomposition</subject><subject>reduced order modeling</subject><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhoMoWGp_gZfFk5fW2Y9k06OUVoWCInpeN5uJXUl3625Syb93JepphuFheN8nyy4pLCgFfvO0G-IzHtcLCmwBgnNgJ9mECQlzgJyf_u8iP89mMX4AAC1gKSmbZG8bH750qElEF21nj7YbiD4cgtdmRxofCMbO7nVn3TvBuh7I0Ubj4w9mWh_7gJFYR5x3rXWoA9n7GlsSsO5NZ727yM4a3Uac_c5p9rpZv6zu59vHu4fV7XZueC66eZ2LlEiLCg1IWpiSlgwaw6QRDQqJkJdUY4HSVLkRVAuh9bKqyypngjUV8ml2Nf71Ka-KxnZodsY7h6ZTVHKZg0zQ9Qilfp99aqb2qQ22rXbo-6iYKHiymMiE8hE1wccYsFGHkDyEQVFQP97Vn_d0YGr0zr8B8Jt5tw</recordid><startdate>20201005</startdate><enddate>20201005</enddate><creator>Ahmed, Shady E.</creator><creator>Bhar, Kinjal</creator><creator>San, Omer</creator><creator>Rasheed, Adil</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2241-4648</orcidid><orcidid>https://orcid.org/0000-0003-2690-983X</orcidid><orcidid>https://orcid.org/0000-0001-5548-0265</orcidid><orcidid>https://orcid.org/0000000155480265</orcidid><orcidid>https://orcid.org/000000032690983X</orcidid><orcidid>https://orcid.org/0000000222414648</orcidid></search><sort><creationdate>20201005</creationdate><title>Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction</title><author>Ahmed, Shady E. ; Bhar, Kinjal ; San, Omer ; Rasheed, Adil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-d54097a4bec0716c81820fc27c4fe47e0581ae6e7cb5c41a44aa9bd8b5242fbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Burgers equation</topic><topic>closure modeling</topic><topic>ENGINEERING</topic><topic>Forward sensitivity method</topic><topic>Galerkin projection</topic><topic>moving shock</topic><topic>proper orthogonal decomposition</topic><topic>reduced order modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Shady E.</creatorcontrib><creatorcontrib>Bhar, Kinjal</creatorcontrib><creatorcontrib>San, Omer</creatorcontrib><creatorcontrib>Rasheed, Adil</creatorcontrib><creatorcontrib>Oklahoma State Univ., Stillwater, OK (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Shady E.</au><au>Bhar, Kinjal</au><au>San, Omer</au><au>Rasheed, Adil</au><aucorp>Oklahoma State Univ., Stillwater, OK (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction</atitle><jtitle>Physical review. E</jtitle><date>2020-10-05</date><risdate>2020</risdate><volume>102</volume><issue>4</issue><spage>043302</spage><epage>043302</epage><pages>043302-043302</pages><artnum>043302</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>In this paper, we propose a variational approach to estimate eddy viscosity using forward sensitivity method (FSM) for closure modeling in nonlinear reduced order models. FSM is a data assimilation technique that blends model's predictions with noisy observations to correct initial state and/or model parameters. We apply this approach on a projection based reduced order model (ROM) of the one-dimensional viscous Burgers equation with a square wave defining a moving shock, and the two-dimensional vorticity transport equation formulating a decay of Kraichnan turbulence. We investigate the capability of the approach to approximate an optimal value for eddy viscosity with different measurement configurations. Specifically, we show that our approach can sufficiently assimilate information either through full field or sparse noisy measurements to estimate eddy viscosity closure to cure standard Galerkin reduced order model (GROM) predictions. Therefore, our approach provides a modular framework to correct forecasting error from a sparse observational network on a latent space. We highlight that the proposed GROM-FSM framework is promising for emerging digital twin applications, where real-time sensor measurements can be used to update and optimize surrogate model's parameters.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevE.102.043302</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2241-4648</orcidid><orcidid>https://orcid.org/0000-0003-2690-983X</orcidid><orcidid>https://orcid.org/0000-0001-5548-0265</orcidid><orcidid>https://orcid.org/0000000155480265</orcidid><orcidid>https://orcid.org/000000032690983X</orcidid><orcidid>https://orcid.org/0000000222414648</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2020-10, Vol.102 (4), p.043302-043302, Article 043302 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_osti_scitechconnect_1737507 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Burgers equation closure modeling ENGINEERING Forward sensitivity method Galerkin projection moving shock proper orthogonal decomposition reduced order modeling |
title | Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forward%20sensitivity%20approach%20for%20estimating%20eddy%20viscosity%20closures%20in%20nonlinear%20model%20reduction&rft.jtitle=Physical%20review.%20E&rft.au=Ahmed,%20Shady%20E.&rft.aucorp=Oklahoma%20State%20Univ.,%20Stillwater,%20OK%20(United%20States)&rft.date=2020-10-05&rft.volume=102&rft.issue=4&rft.spage=043302&rft.epage=043302&rft.pages=043302-043302&rft.artnum=043302&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.102.043302&rft_dat=%3Cproquest_osti_%3E2463102073%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-d54097a4bec0716c81820fc27c4fe47e0581ae6e7cb5c41a44aa9bd8b5242fbe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2463102073&rft_id=info:pmid/&rfr_iscdi=true |