Loading…

Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction

In this paper, we propose a variational approach to estimate eddy viscosity using forward sensitivity method (FSM) for closure modeling in nonlinear reduced order models. FSM is a data assimilation technique that blends model's predictions with noisy observations to correct initial state and/or...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2020-10, Vol.102 (4), p.043302-043302, Article 043302
Main Authors: Ahmed, Shady E., Bhar, Kinjal, San, Omer, Rasheed, Adil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-d54097a4bec0716c81820fc27c4fe47e0581ae6e7cb5c41a44aa9bd8b5242fbe3
cites cdi_FETCH-LOGICAL-c354t-d54097a4bec0716c81820fc27c4fe47e0581ae6e7cb5c41a44aa9bd8b5242fbe3
container_end_page 043302
container_issue 4
container_start_page 043302
container_title Physical review. E
container_volume 102
creator Ahmed, Shady E.
Bhar, Kinjal
San, Omer
Rasheed, Adil
description In this paper, we propose a variational approach to estimate eddy viscosity using forward sensitivity method (FSM) for closure modeling in nonlinear reduced order models. FSM is a data assimilation technique that blends model's predictions with noisy observations to correct initial state and/or model parameters. We apply this approach on a projection based reduced order model (ROM) of the one-dimensional viscous Burgers equation with a square wave defining a moving shock, and the two-dimensional vorticity transport equation formulating a decay of Kraichnan turbulence. We investigate the capability of the approach to approximate an optimal value for eddy viscosity with different measurement configurations. Specifically, we show that our approach can sufficiently assimilate information either through full field or sparse noisy measurements to estimate eddy viscosity closure to cure standard Galerkin reduced order model (GROM) predictions. Therefore, our approach provides a modular framework to correct forecasting error from a sparse observational network on a latent space. We highlight that the proposed GROM-FSM framework is promising for emerging digital twin applications, where real-time sensor measurements can be used to update and optimize surrogate model's parameters.
doi_str_mv 10.1103/PhysRevE.102.043302
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1737507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2463102073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-d54097a4bec0716c81820fc27c4fe47e0581ae6e7cb5c41a44aa9bd8b5242fbe3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWGp_gZfFk5fW2Y9k06OUVoWCInpeN5uJXUl3625Syb93JepphuFheN8nyy4pLCgFfvO0G-IzHtcLCmwBgnNgJ9mECQlzgJyf_u8iP89mMX4AAC1gKSmbZG8bH750qElEF21nj7YbiD4cgtdmRxofCMbO7nVn3TvBuh7I0Ubj4w9mWh_7gJFYR5x3rXWoA9n7GlsSsO5NZ727yM4a3Uac_c5p9rpZv6zu59vHu4fV7XZueC66eZ2LlEiLCg1IWpiSlgwaw6QRDQqJkJdUY4HSVLkRVAuh9bKqyypngjUV8ml2Nf71Ka-KxnZodsY7h6ZTVHKZg0zQ9Qilfp99aqb2qQ22rXbo-6iYKHiymMiE8hE1wccYsFGHkDyEQVFQP97Vn_d0YGr0zr8B8Jt5tw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463102073</pqid></control><display><type>article</type><title>Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Ahmed, Shady E. ; Bhar, Kinjal ; San, Omer ; Rasheed, Adil</creator><creatorcontrib>Ahmed, Shady E. ; Bhar, Kinjal ; San, Omer ; Rasheed, Adil ; Oklahoma State Univ., Stillwater, OK (United States)</creatorcontrib><description>In this paper, we propose a variational approach to estimate eddy viscosity using forward sensitivity method (FSM) for closure modeling in nonlinear reduced order models. FSM is a data assimilation technique that blends model's predictions with noisy observations to correct initial state and/or model parameters. We apply this approach on a projection based reduced order model (ROM) of the one-dimensional viscous Burgers equation with a square wave defining a moving shock, and the two-dimensional vorticity transport equation formulating a decay of Kraichnan turbulence. We investigate the capability of the approach to approximate an optimal value for eddy viscosity with different measurement configurations. Specifically, we show that our approach can sufficiently assimilate information either through full field or sparse noisy measurements to estimate eddy viscosity closure to cure standard Galerkin reduced order model (GROM) predictions. Therefore, our approach provides a modular framework to correct forecasting error from a sparse observational network on a latent space. We highlight that the proposed GROM-FSM framework is promising for emerging digital twin applications, where real-time sensor measurements can be used to update and optimize surrogate model's parameters.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.102.043302</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Burgers equation ; closure modeling ; ENGINEERING ; Forward sensitivity method ; Galerkin projection ; moving shock ; proper orthogonal decomposition ; reduced order modeling</subject><ispartof>Physical review. E, 2020-10, Vol.102 (4), p.043302-043302, Article 043302</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-d54097a4bec0716c81820fc27c4fe47e0581ae6e7cb5c41a44aa9bd8b5242fbe3</citedby><cites>FETCH-LOGICAL-c354t-d54097a4bec0716c81820fc27c4fe47e0581ae6e7cb5c41a44aa9bd8b5242fbe3</cites><orcidid>0000-0002-2241-4648 ; 0000-0003-2690-983X ; 0000-0001-5548-0265 ; 0000000155480265 ; 000000032690983X ; 0000000222414648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1737507$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, Shady E.</creatorcontrib><creatorcontrib>Bhar, Kinjal</creatorcontrib><creatorcontrib>San, Omer</creatorcontrib><creatorcontrib>Rasheed, Adil</creatorcontrib><creatorcontrib>Oklahoma State Univ., Stillwater, OK (United States)</creatorcontrib><title>Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction</title><title>Physical review. E</title><description>In this paper, we propose a variational approach to estimate eddy viscosity using forward sensitivity method (FSM) for closure modeling in nonlinear reduced order models. FSM is a data assimilation technique that blends model's predictions with noisy observations to correct initial state and/or model parameters. We apply this approach on a projection based reduced order model (ROM) of the one-dimensional viscous Burgers equation with a square wave defining a moving shock, and the two-dimensional vorticity transport equation formulating a decay of Kraichnan turbulence. We investigate the capability of the approach to approximate an optimal value for eddy viscosity with different measurement configurations. Specifically, we show that our approach can sufficiently assimilate information either through full field or sparse noisy measurements to estimate eddy viscosity closure to cure standard Galerkin reduced order model (GROM) predictions. Therefore, our approach provides a modular framework to correct forecasting error from a sparse observational network on a latent space. We highlight that the proposed GROM-FSM framework is promising for emerging digital twin applications, where real-time sensor measurements can be used to update and optimize surrogate model's parameters.</description><subject>Burgers equation</subject><subject>closure modeling</subject><subject>ENGINEERING</subject><subject>Forward sensitivity method</subject><subject>Galerkin projection</subject><subject>moving shock</subject><subject>proper orthogonal decomposition</subject><subject>reduced order modeling</subject><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhoMoWGp_gZfFk5fW2Y9k06OUVoWCInpeN5uJXUl3625Syb93JepphuFheN8nyy4pLCgFfvO0G-IzHtcLCmwBgnNgJ9mECQlzgJyf_u8iP89mMX4AAC1gKSmbZG8bH750qElEF21nj7YbiD4cgtdmRxofCMbO7nVn3TvBuh7I0Ubj4w9mWh_7gJFYR5x3rXWoA9n7GlsSsO5NZ727yM4a3Uac_c5p9rpZv6zu59vHu4fV7XZueC66eZ2LlEiLCg1IWpiSlgwaw6QRDQqJkJdUY4HSVLkRVAuh9bKqyypngjUV8ml2Nf71Ka-KxnZodsY7h6ZTVHKZg0zQ9Qilfp99aqb2qQ22rXbo-6iYKHiymMiE8hE1wccYsFGHkDyEQVFQP97Vn_d0YGr0zr8B8Jt5tw</recordid><startdate>20201005</startdate><enddate>20201005</enddate><creator>Ahmed, Shady E.</creator><creator>Bhar, Kinjal</creator><creator>San, Omer</creator><creator>Rasheed, Adil</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2241-4648</orcidid><orcidid>https://orcid.org/0000-0003-2690-983X</orcidid><orcidid>https://orcid.org/0000-0001-5548-0265</orcidid><orcidid>https://orcid.org/0000000155480265</orcidid><orcidid>https://orcid.org/000000032690983X</orcidid><orcidid>https://orcid.org/0000000222414648</orcidid></search><sort><creationdate>20201005</creationdate><title>Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction</title><author>Ahmed, Shady E. ; Bhar, Kinjal ; San, Omer ; Rasheed, Adil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-d54097a4bec0716c81820fc27c4fe47e0581ae6e7cb5c41a44aa9bd8b5242fbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Burgers equation</topic><topic>closure modeling</topic><topic>ENGINEERING</topic><topic>Forward sensitivity method</topic><topic>Galerkin projection</topic><topic>moving shock</topic><topic>proper orthogonal decomposition</topic><topic>reduced order modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Shady E.</creatorcontrib><creatorcontrib>Bhar, Kinjal</creatorcontrib><creatorcontrib>San, Omer</creatorcontrib><creatorcontrib>Rasheed, Adil</creatorcontrib><creatorcontrib>Oklahoma State Univ., Stillwater, OK (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Shady E.</au><au>Bhar, Kinjal</au><au>San, Omer</au><au>Rasheed, Adil</au><aucorp>Oklahoma State Univ., Stillwater, OK (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction</atitle><jtitle>Physical review. E</jtitle><date>2020-10-05</date><risdate>2020</risdate><volume>102</volume><issue>4</issue><spage>043302</spage><epage>043302</epage><pages>043302-043302</pages><artnum>043302</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>In this paper, we propose a variational approach to estimate eddy viscosity using forward sensitivity method (FSM) for closure modeling in nonlinear reduced order models. FSM is a data assimilation technique that blends model's predictions with noisy observations to correct initial state and/or model parameters. We apply this approach on a projection based reduced order model (ROM) of the one-dimensional viscous Burgers equation with a square wave defining a moving shock, and the two-dimensional vorticity transport equation formulating a decay of Kraichnan turbulence. We investigate the capability of the approach to approximate an optimal value for eddy viscosity with different measurement configurations. Specifically, we show that our approach can sufficiently assimilate information either through full field or sparse noisy measurements to estimate eddy viscosity closure to cure standard Galerkin reduced order model (GROM) predictions. Therefore, our approach provides a modular framework to correct forecasting error from a sparse observational network on a latent space. We highlight that the proposed GROM-FSM framework is promising for emerging digital twin applications, where real-time sensor measurements can be used to update and optimize surrogate model's parameters.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevE.102.043302</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2241-4648</orcidid><orcidid>https://orcid.org/0000-0003-2690-983X</orcidid><orcidid>https://orcid.org/0000-0001-5548-0265</orcidid><orcidid>https://orcid.org/0000000155480265</orcidid><orcidid>https://orcid.org/000000032690983X</orcidid><orcidid>https://orcid.org/0000000222414648</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2020-10, Vol.102 (4), p.043302-043302, Article 043302
issn 2470-0045
2470-0053
language eng
recordid cdi_osti_scitechconnect_1737507
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Burgers equation
closure modeling
ENGINEERING
Forward sensitivity method
Galerkin projection
moving shock
proper orthogonal decomposition
reduced order modeling
title Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forward%20sensitivity%20approach%20for%20estimating%20eddy%20viscosity%20closures%20in%20nonlinear%20model%20reduction&rft.jtitle=Physical%20review.%20E&rft.au=Ahmed,%20Shady%20E.&rft.aucorp=Oklahoma%20State%20Univ.,%20Stillwater,%20OK%20(United%20States)&rft.date=2020-10-05&rft.volume=102&rft.issue=4&rft.spage=043302&rft.epage=043302&rft.pages=043302-043302&rft.artnum=043302&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.102.043302&rft_dat=%3Cproquest_osti_%3E2463102073%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-d54097a4bec0716c81820fc27c4fe47e0581ae6e7cb5c41a44aa9bd8b5242fbe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2463102073&rft_id=info:pmid/&rfr_iscdi=true