Loading…
Post-growth modulation doping by ion implantation
Modulation doping is a commonly adopted technique to create two-dimensional (2D) electrons or holes in semiconductor heterostructures. One constraint, however, is that the intentional dopants required for modulation doping are controlled and incorporated during the growth of heterostructures. Using...
Saved in:
Published in: | Applied physics letters 2020-12, Vol.117 (26) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Modulation doping is a commonly adopted technique to create two-dimensional (2D) electrons or holes in semiconductor heterostructures. One constraint, however, is that the intentional dopants required for modulation doping are controlled and incorporated during the growth of heterostructures. Using undoped strained germanium quantum wells as the model material system, we show, in this work, that modulation doping can be achieved post-growth of heterostructures by ion implantation and dopant-activation anneals. The carrier density is controlled ex situ by varying the ion fluence and implant energy, and an empirical calibration curve is obtained. While the mobility of the resulting 2D holes is lower than that in undoped heterostructure field-effect transistors built using the same material, the achievable carrier density is significantly higher. Potential applications of this modulation-doping technique are discussed. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0031992 |