Loading…

Direct determination of cellulosic glucan content in starch-containing samples

A simple and highly selective analytical procedure is presented for the determination of cellulosic glucan content in samples that contain both cellulose and starch. This method eliminates the unacceptably large compounding errors of current two-measurement methods. If both starch and cellulose are...

Full description

Saved in:
Bibliographic Details
Published in:Cellulose (London) 2021-03, Vol.28 (4), p.1989-2002
Main Authors: Sluiter, Justin B., Michel, Katie P., Addison, Bennett, Zeng, Yining, Michener, William, Paterson, Alexander L., Perras, Frédéric A., Wolfrum, Edward J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A simple and highly selective analytical procedure is presented for the determination of cellulosic glucan content in samples that contain both cellulose and starch. This method eliminates the unacceptably large compounding errors of current two-measurement methods. If both starch and cellulose are present before analytical hydrolysis, both will be hydrolyzed to glucose causing bias and inaccuracy in the method. To prevent this interference, the removal of starch prior to cellulosic quantification is crucial. The method presented here is a concise in-series procedure with minimal measurements, eliminating large compounding errors. Sample preparation consists of a starch extraction employing enzymatic hydrolysis followed by a simple filtration and wash. The samples are then subjected to a two-stage acid hydrolysis. The concentration of glucose is determined by ion exchange high-performance liquid chromatography with a Pb 2+ column and a refractive index detector. The cellulosic glucan content is calculated based on the initial dry weight of the starting material. Data for the native biomass materials studied show excellent reproducibility, with coefficients of variance of 3.0% or less associated with the method. This selectivity for cellulosic glucan by the procedure was validated with several analytical techniques such as liquid chromatography coupled with mass spectrometry (LC–MS), Raman spectroscopy, and nuclear magnetic resonance.
ISSN:0969-0239
1572-882X
DOI:10.1007/s10570-020-03652-2