Loading…

Preferential turbulence enhancement in two-dimensional compressions

When initially isotropic three-dimensional (3D) turbulence is compressed along two dimensions, the compression supplies energy directly to the flow components in the compressed directions, while the flow component in the noncompressed direction experiences the effects of compression only indirectly...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2020-11, Vol.102 (5-1), p.053213-053213, Article 053213
Main Authors: Davidovits, Seth, Fisch, Nathaniel J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When initially isotropic three-dimensional (3D) turbulence is compressed along two dimensions, the compression supplies energy directly to the flow components in the compressed directions, while the flow component in the noncompressed direction experiences the effects of compression only indirectly through the nonlinearity of the hydrodynamic equations. Here we study such 2D compressions using numerical simulations. For initially isotropic turbulence, we find that the nonlinearity can be insufficient to maintain isotropy, with the energy components parallel to the compression coming to dominate the turbulent energy, with a number of consequences. Among these are the possibilities for stronger and more easily sustained growth of turbulent energy than in 3D compressions and for an increasing turbulent Mach number even in a compression without thermal losses.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.102.053213