Loading…

Frictional interactions at high velocity ductile metal interfaces

We have examined the effect of evolution of grain morphology on the frictional force at polycrystalline Al-Al and Al-Ta interfaces as a function of grain size and sliding velocity. We present the results of 8M, 26M and 138M particle NonEquilibrium Molecular Dynamics (NEMD) simulations for grain size...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2014-01, Vol.500 (17), p.172003-5
Main Authors: Hammerberg, J E, Milhans, J L, Ravelo, R J, Germann, T C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have examined the effect of evolution of grain morphology on the frictional force at polycrystalline Al-Al and Al-Ta interfaces as a function of grain size and sliding velocity. We present the results of 8M, 26M and 138M particle NonEquilibrium Molecular Dynamics (NEMD) simulations for grain sizes of 13 and 20 nm. Sample sizes consisted of 3×3×3 and 5×5×5 grains on each side of a sliding interface. We have considered sliding velocities from 20 to 4000 m/s. For velocities below a size dependent critical velocity above which a fluid layer forms, we find enhanced grain coarsening leading to a highly strained, graded final steady state microstructure that exhibits a dynamic morphology for times greater than 5-10 ns. We find that the frictional force is insensitive to the initial grain size distribution due to the evolution of the initial distribution to a new nonequilibrium steady state. We discuss the relationship of these results to single crystal interfaces and the mechanisms for grain size and shape evolution.
ISSN:1742-6596
1742-6588
1742-6596
DOI:10.1088/1742-6596/500/17/172003