Loading…
BiInO3 phases under asymmetric in-plane strain
Density functional theory is used to study the effect of asymmetric in-plane strain on various BiInO 3 phases. Structural relaxation is carried out to simulate the growth of coherently strained epitaxial films on (001) oriented orthorhombic perovskite substrates. The results are in particular analyz...
Saved in:
Published in: | Journal of materials science 2021-05, Vol.56 (14), p.8406-8414 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Density functional theory is used to study the effect of asymmetric in-plane strain on various BiInO
3
phases. Structural relaxation is carried out to simulate the growth of coherently strained epitaxial films on (001) oriented orthorhombic perovskite substrates. The results are in particular analyzed with respect to commercially available substrates in order to assess the stabilization of new and fundamentally interesting BiInO
3
phases. We find that a pyroxene-like
Pcca
phase is energetically more favorable than the bulk-like
Pna2
1
structure on standard cubic substrate materials, such as SrTiO
3
. However, the presence of imaginary phonon modes suggests that this phase is dynamically instable. The bulk-like structure instead is stable over a wide range of lattice in-plane strain, but coherent growth requires substrates with unusually large lattice parameters. We suggest the use of lanthanate substrates in order to produce high-quality thin films of the bulk phase.
Graphical abstract |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-021-05807-3 |