Loading…

Study of CdZnTeSe Gamma-Ray Detector under Various Bias Voltages

Cadmium zinc telluride selenide (CdZnTeSe) is a new semiconductor material for gamma-ray detection and spectroscopy applications at room temperature. It has very high crystal quality compared to similar materials such as cadmium telluride and cadmium zinc telluride. The consistency of peak position...

Full description

Saved in:
Bibliographic Details
Published in:Materials sciences and applications 2020-08, Vol.11 (8), p.553-559
Main Authors: Drabo, Mebougna L., Egarievwe, Stephen U., Roy, Utpal N., Harrison, Benicia A., Goree, Carmella A., Savage, Emmanuel K., James, Ralph B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cadmium zinc telluride selenide (CdZnTeSe) is a new semiconductor material for gamma-ray detection and spectroscopy applications at room temperature. It has very high crystal quality compared to similar materials such as cadmium telluride and cadmium zinc telluride. The consistency of peak position in radiation detection devices is important to practical applications. In this paper, we have characterized a CdZnTeSe planar detector for bias voltages in the range of -20 V to -200 V and amplifier shaping time of 2, 3 and 6 μs. The peak position of the 59.6-keV gamma line of 241Am becomes more stable as the absolute value of the applied voltage increases. The best energy resolution of 8.5% was obtained for the 59.6-keV gamma peak at -160 V bias voltage and 3-μs shaping time. The energy resolution was relatively stable in the -120 V to -200 V range for a 6-μs shaping time. Future work will be focused on the study of the peak position and energy resolution over time.
ISSN:2153-117X
2153-1188
DOI:10.4236/msa.2020.118036