Loading…

Linking the multiscale porous structure of hexacyanoferrate-loaded silica monoliths to their hydrodynamic and cesium sorption properties

•Monolithic and powder forms of functionalized silica are compared for Cs removal.•Reactive transport modeling is used to fit and interpret experimental data.•The monolithic structure sustains high flow rates with sharp breakthrough front.•The high selectivity and fast kinetics come from accessible...

Full description

Saved in:
Bibliographic Details
Published in:Separation and purification technology 2019-12, Vol.229 (C), p.115796, Article 115796
Main Authors: Cabaud, Clément, Barré, Yves, De Windt, Laurent, Grandjean, Agnès
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c450t-3ba687f2486c100c307c7f7f97ceaa1a1698b64c0affac9f776df49449f112273
cites cdi_FETCH-LOGICAL-c450t-3ba687f2486c100c307c7f7f97ceaa1a1698b64c0affac9f776df49449f112273
container_end_page
container_issue C
container_start_page 115796
container_title Separation and purification technology
container_volume 229
creator Cabaud, Clément
Barré, Yves
De Windt, Laurent
Grandjean, Agnès
description •Monolithic and powder forms of functionalized silica are compared for Cs removal.•Reactive transport modeling is used to fit and interpret experimental data.•The monolithic structure sustains high flow rates with sharp breakthrough front.•The high selectivity and fast kinetics come from accessible HCF particles.•The modeling approach can be extrapolated to various multiscale sorbents. Multiscale porous silica monoliths functionalized with potassium/copper hexacyanoferrate (HCF) have been evaluated for the column extraction of cesium from natural water. Compared with commercial silica gel particles, results show that the hierarchically porous architecture of the monoliths improves the bed efficiency in column extraction, and the selectivity, distribution coefficient and exchange kinetics in batch extraction. Cesium breakthrough experiments show that these preferable properties of the monolithic structure are maintained in column operation. This analysis of the batch and breakthrough experiments is supported by scanning and transmission electron microscopy data, residence time distributions, and reactive transport modeling assuming dispersive flow in the macroporous intraskeletal channels and diffusion inside the walls of the structure and the HCF aggregates.
doi_str_mv 10.1016/j.seppur.2019.115796
format article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1767586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1383586619320076</els_id><sourcerecordid>S1383586619320076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-3ba687f2486c100c307c7f7f97ceaa1a1698b64c0affac9f776df49449f112273</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEEqXwBiwsdixya-fHTjZIVUUp0pW6gbU1nYzJXHLtyHYq7hvw2CQKYslqRqNzjmbmK4r3Sh6UVPrmdEg0z0s8VFL1B6Va0-sXxZXqTF3Wpm9ern3d1WXbaf26eJPSSUplVFddFb-P7H-y_yHySOK8TJkTwkRiDjEsSaQcF8xLJBGcGOkX4AV8cBQjZCqnAAMNIvHECOIcfJg4j0nksMVxFONliGG4eDgzCvCDQEq8nEUKcc4cvJhjmClmpvS2eOVgSvTub70uvt9__nb3UB4fv3y9uz2W2LQyl_UT6M64quk0KimxlgaNM643SAAKlO67J92gBOcAe2eMHlzTN03vlKoqU18XH_bckDLbhJwJRwzeE2arjDbrk1bRx100wmTnyGeIFxuA7cPt0W4zWdVtq2X7rFZts2sxhpQiuX8GJe2Gx57sjsdueOyOZ7V92m20HvvMFLddyCMNHLdVhsD_D_gDBPiekA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linking the multiscale porous structure of hexacyanoferrate-loaded silica monoliths to their hydrodynamic and cesium sorption properties</title><source>ScienceDirect Journals</source><creator>Cabaud, Clément ; Barré, Yves ; De Windt, Laurent ; Grandjean, Agnès</creator><creatorcontrib>Cabaud, Clément ; Barré, Yves ; De Windt, Laurent ; Grandjean, Agnès ; Energy Frontier Research Centers (EFRC) (United States). Center for Hierarchical Waste Form Materials (CHWM) ; Univ. of South Carolina, Columbia, SC (United States)</creatorcontrib><description>•Monolithic and powder forms of functionalized silica are compared for Cs removal.•Reactive transport modeling is used to fit and interpret experimental data.•The monolithic structure sustains high flow rates with sharp breakthrough front.•The high selectivity and fast kinetics come from accessible HCF particles.•The modeling approach can be extrapolated to various multiscale sorbents. Multiscale porous silica monoliths functionalized with potassium/copper hexacyanoferrate (HCF) have been evaluated for the column extraction of cesium from natural water. Compared with commercial silica gel particles, results show that the hierarchically porous architecture of the monoliths improves the bed efficiency in column extraction, and the selectivity, distribution coefficient and exchange kinetics in batch extraction. Cesium breakthrough experiments show that these preferable properties of the monolithic structure are maintained in column operation. This analysis of the batch and breakthrough experiments is supported by scanning and transmission electron microscopy data, residence time distributions, and reactive transport modeling assuming dispersive flow in the macroporous intraskeletal channels and diffusion inside the walls of the structure and the HCF aggregates.</description><identifier>ISSN: 1383-5866</identifier><identifier>EISSN: 1873-3794</identifier><identifier>DOI: 10.1016/j.seppur.2019.115796</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Column process ; Earth Sciences ; Ferrocyanide ; Geochemistry ; Hierarchical material ; HYTEC ; Ion exchanger ; nuclear, materials and chemistry by design, synthesis (novel materials), synthesis (predictive) ; Sciences of the Universe</subject><ispartof>Separation and purification technology, 2019-12, Vol.229 (C), p.115796, Article 115796</ispartof><rights>2019 Elsevier B.V.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-3ba687f2486c100c307c7f7f97ceaa1a1698b64c0affac9f776df49449f112273</citedby><cites>FETCH-LOGICAL-c450t-3ba687f2486c100c307c7f7f97ceaa1a1698b64c0affac9f776df49449f112273</cites><orcidid>0000-0001-7491-8664 ; 0000-0001-9035-482X ; 0000-0002-3815-2144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://minesparis-psl.hal.science/hal-02355605$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1767586$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cabaud, Clément</creatorcontrib><creatorcontrib>Barré, Yves</creatorcontrib><creatorcontrib>De Windt, Laurent</creatorcontrib><creatorcontrib>Grandjean, Agnès</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Hierarchical Waste Form Materials (CHWM)</creatorcontrib><creatorcontrib>Univ. of South Carolina, Columbia, SC (United States)</creatorcontrib><title>Linking the multiscale porous structure of hexacyanoferrate-loaded silica monoliths to their hydrodynamic and cesium sorption properties</title><title>Separation and purification technology</title><description>•Monolithic and powder forms of functionalized silica are compared for Cs removal.•Reactive transport modeling is used to fit and interpret experimental data.•The monolithic structure sustains high flow rates with sharp breakthrough front.•The high selectivity and fast kinetics come from accessible HCF particles.•The modeling approach can be extrapolated to various multiscale sorbents. Multiscale porous silica monoliths functionalized with potassium/copper hexacyanoferrate (HCF) have been evaluated for the column extraction of cesium from natural water. Compared with commercial silica gel particles, results show that the hierarchically porous architecture of the monoliths improves the bed efficiency in column extraction, and the selectivity, distribution coefficient and exchange kinetics in batch extraction. Cesium breakthrough experiments show that these preferable properties of the monolithic structure are maintained in column operation. This analysis of the batch and breakthrough experiments is supported by scanning and transmission electron microscopy data, residence time distributions, and reactive transport modeling assuming dispersive flow in the macroporous intraskeletal channels and diffusion inside the walls of the structure and the HCF aggregates.</description><subject>Column process</subject><subject>Earth Sciences</subject><subject>Ferrocyanide</subject><subject>Geochemistry</subject><subject>Hierarchical material</subject><subject>HYTEC</subject><subject>Ion exchanger</subject><subject>nuclear, materials and chemistry by design, synthesis (novel materials), synthesis (predictive)</subject><subject>Sciences of the Universe</subject><issn>1383-5866</issn><issn>1873-3794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhSMEEqXwBiwsdixya-fHTjZIVUUp0pW6gbU1nYzJXHLtyHYq7hvw2CQKYslqRqNzjmbmK4r3Sh6UVPrmdEg0z0s8VFL1B6Va0-sXxZXqTF3Wpm9ern3d1WXbaf26eJPSSUplVFddFb-P7H-y_yHySOK8TJkTwkRiDjEsSaQcF8xLJBGcGOkX4AV8cBQjZCqnAAMNIvHECOIcfJg4j0nksMVxFONliGG4eDgzCvCDQEq8nEUKcc4cvJhjmClmpvS2eOVgSvTub70uvt9__nb3UB4fv3y9uz2W2LQyl_UT6M64quk0KimxlgaNM643SAAKlO67J92gBOcAe2eMHlzTN03vlKoqU18XH_bckDLbhJwJRwzeE2arjDbrk1bRx100wmTnyGeIFxuA7cPt0W4zWdVtq2X7rFZts2sxhpQiuX8GJe2Gx57sjsdueOyOZ7V92m20HvvMFLddyCMNHLdVhsD_D_gDBPiekA</recordid><startdate>20191215</startdate><enddate>20191215</enddate><creator>Cabaud, Clément</creator><creator>Barré, Yves</creator><creator>De Windt, Laurent</creator><creator>Grandjean, Agnès</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7491-8664</orcidid><orcidid>https://orcid.org/0000-0001-9035-482X</orcidid><orcidid>https://orcid.org/0000-0002-3815-2144</orcidid></search><sort><creationdate>20191215</creationdate><title>Linking the multiscale porous structure of hexacyanoferrate-loaded silica monoliths to their hydrodynamic and cesium sorption properties</title><author>Cabaud, Clément ; Barré, Yves ; De Windt, Laurent ; Grandjean, Agnès</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-3ba687f2486c100c307c7f7f97ceaa1a1698b64c0affac9f776df49449f112273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Column process</topic><topic>Earth Sciences</topic><topic>Ferrocyanide</topic><topic>Geochemistry</topic><topic>Hierarchical material</topic><topic>HYTEC</topic><topic>Ion exchanger</topic><topic>nuclear, materials and chemistry by design, synthesis (novel materials), synthesis (predictive)</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabaud, Clément</creatorcontrib><creatorcontrib>Barré, Yves</creatorcontrib><creatorcontrib>De Windt, Laurent</creatorcontrib><creatorcontrib>Grandjean, Agnès</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Hierarchical Waste Form Materials (CHWM)</creatorcontrib><creatorcontrib>Univ. of South Carolina, Columbia, SC (United States)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Separation and purification technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabaud, Clément</au><au>Barré, Yves</au><au>De Windt, Laurent</au><au>Grandjean, Agnès</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Hierarchical Waste Form Materials (CHWM)</aucorp><aucorp>Univ. of South Carolina, Columbia, SC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking the multiscale porous structure of hexacyanoferrate-loaded silica monoliths to their hydrodynamic and cesium sorption properties</atitle><jtitle>Separation and purification technology</jtitle><date>2019-12-15</date><risdate>2019</risdate><volume>229</volume><issue>C</issue><spage>115796</spage><pages>115796-</pages><artnum>115796</artnum><issn>1383-5866</issn><eissn>1873-3794</eissn><abstract>•Monolithic and powder forms of functionalized silica are compared for Cs removal.•Reactive transport modeling is used to fit and interpret experimental data.•The monolithic structure sustains high flow rates with sharp breakthrough front.•The high selectivity and fast kinetics come from accessible HCF particles.•The modeling approach can be extrapolated to various multiscale sorbents. Multiscale porous silica monoliths functionalized with potassium/copper hexacyanoferrate (HCF) have been evaluated for the column extraction of cesium from natural water. Compared with commercial silica gel particles, results show that the hierarchically porous architecture of the monoliths improves the bed efficiency in column extraction, and the selectivity, distribution coefficient and exchange kinetics in batch extraction. Cesium breakthrough experiments show that these preferable properties of the monolithic structure are maintained in column operation. This analysis of the batch and breakthrough experiments is supported by scanning and transmission electron microscopy data, residence time distributions, and reactive transport modeling assuming dispersive flow in the macroporous intraskeletal channels and diffusion inside the walls of the structure and the HCF aggregates.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.seppur.2019.115796</doi><orcidid>https://orcid.org/0000-0001-7491-8664</orcidid><orcidid>https://orcid.org/0000-0001-9035-482X</orcidid><orcidid>https://orcid.org/0000-0002-3815-2144</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1383-5866
ispartof Separation and purification technology, 2019-12, Vol.229 (C), p.115796, Article 115796
issn 1383-5866
1873-3794
language eng
recordid cdi_osti_scitechconnect_1767586
source ScienceDirect Journals
subjects Column process
Earth Sciences
Ferrocyanide
Geochemistry
Hierarchical material
HYTEC
Ion exchanger
nuclear, materials and chemistry by design, synthesis (novel materials), synthesis (predictive)
Sciences of the Universe
title Linking the multiscale porous structure of hexacyanoferrate-loaded silica monoliths to their hydrodynamic and cesium sorption properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20the%20multiscale%20porous%20structure%20of%20hexacyanoferrate-loaded%20silica%20monoliths%20to%20their%20hydrodynamic%20and%20cesium%20sorption%20properties&rft.jtitle=Separation%20and%20purification%20technology&rft.au=Cabaud,%20Cl%C3%A9ment&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Hierarchical%20Waste%20Form%20Materials%20(CHWM)&rft.date=2019-12-15&rft.volume=229&rft.issue=C&rft.spage=115796&rft.pages=115796-&rft.artnum=115796&rft.issn=1383-5866&rft.eissn=1873-3794&rft_id=info:doi/10.1016/j.seppur.2019.115796&rft_dat=%3Celsevier_osti_%3ES1383586619320076%3C/elsevier_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-3ba687f2486c100c307c7f7f97ceaa1a1698b64c0affac9f776df49449f112273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true